NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
David P. Reid; Timothy D. Drysdale – IEEE Transactions on Learning Technologies, 2024
The designs of many student-facing learning analytics (SFLA) dashboards are insufficiently informed by educational research and lack rigorous evaluation in authentic learning contexts, including during remote laboratory practical work. In this article, we present and evaluate an SFLA dashboard designed using the principles of formative assessment…
Descriptors: Learning Analytics, Laboratory Experiments, Electronic Learning, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Saint, John; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2020
The recent focus on learning analytics (LA) to analyze temporal dimensions of learning holds the promise of providing insights into latent constructs, such as learning strategy, self-regulated learning (SRL), and metacognition. These methods seek to provide an enriched view of learner behaviors beyond the scope of commonly used correlational or…
Descriptors: Undergraduate Students, Engineering Education, Learning Analytics, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Alcaraz, Raul; Martinez-Rodrigo, Arturo; Zangroniz, Roberto; Rieta, Jose Joaquin – IEEE Transactions on Learning Technologies, 2021
Early warning systems (EWSs) have proven to be useful in identifying students at risk of failing both online and conventional courses. Although some general systems have reported acceptable ability to work in modules with different characteristics, those designed from a course-specific perspective have recently provided better outcomes. Hence, the…
Descriptors: Prediction, At Risk Students, Academic Failure, Electronic Equipment