NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Krieter, Philipp – IEEE Transactions on Learning Technologies, 2022
The time students spend in a learning management system (LMS) is an important measurement in learning analytics (LA). One of the most common data sources is log files from LMS, which do not directly reveal the online time, the duration of which needs to be estimated. As this measurement has a great impact on the results of statistical models in…
Descriptors: Integrated Learning Systems, Learning Analytics, Electronic Learning, Students
Peer reviewed Peer reviewed
Direct linkDirect link
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
David P. Reid; Timothy D. Drysdale – IEEE Transactions on Learning Technologies, 2024
The designs of many student-facing learning analytics (SFLA) dashboards are insufficiently informed by educational research and lack rigorous evaluation in authentic learning contexts, including during remote laboratory practical work. In this article, we present and evaluate an SFLA dashboard designed using the principles of formative assessment…
Descriptors: Learning Analytics, Laboratory Experiments, Electronic Learning, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Xing, Wanli; Du, Dongping; Bakhshi, Ali; Chiu, Kuo-Chun; Du, Hanxiang – IEEE Transactions on Learning Technologies, 2021
Predictive modeling in online education is a popular topic in learning analytics research and practice. This study proposes a novel predictive modeling method to improve model transferability over time within the same course and across different courses. The research gaps addressed are limited evidence showing whether a predictive model built on…
Descriptors: Electronic Learning, Bayesian Statistics, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mangaroska, Katerina; Vesin, Boban; Kostakos, Vassilis; Brusilovsky, Peter; Giannakos, Michail N. – IEEE Transactions on Learning Technologies, 2021
With the wide expansion of distributed learning environments the way we learn became more diverse than ever. This poses an opportunity to incorporate different data sources of learning traces that can offer broader insights into learner behavior and the intricacies of the learning process. We argue that combining analytics across different…
Descriptors: Learning Analytics, Electronic Learning, Educational Technology, Instructional Design
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Hodam; Chae, Younsoo; Kim, Suhye; Im, Chang-Hwan – IEEE Transactions on Learning Technologies, 2023
Owing to the rapid development of information and communication technologies, online or mobile learning content is widely available on the Internet. Unlike traditional face-to-face learning, online learning exhibits a critical limitation: real-time interactions between learners and teachers are generally not feasible in online learning. To…
Descriptors: College Students, Control Groups, Attention, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Dominguez, Cesar; Garcia-Izquierdo, Francisco J.; Jaime, Arturo; Perez, Beatriz; Rubio, Angel Luis; Zapata, Maria A. – IEEE Transactions on Learning Technologies, 2021
The study of the relationships between self-regulated learning and formative assessment is an active line of research in the educational community. A recent review of the literature highlights that the study of these connections has been mainly unidirectional, focusing on how formative assessment helps students to self-regulate their learning,…
Descriptors: Learning Analytics, Time Factors (Learning), Self Evaluation (Individuals), Formative Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Molenaar, Inge; Knoop-van Campen, Carolien A. N. – IEEE Transactions on Learning Technologies, 2019
This study investigates how teachers use dashboards in primary school classrooms. While learners practice on a tablet real-time data indicating learner progress and performance is displayed on teacher dashboards. This study examines how teachers use the dashboards, applying Verberts' learning analytics process model. Teacher dashboard…
Descriptors: Educational Technology, Information Management, Learning Analytics, Electronic Learning