NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Sonja Kleter; Uwe Matzat; Rianne Conijn – IEEE Transactions on Learning Technologies, 2024
Much of learning analytics research has focused on factors influencing model generalizability of predictive models for academic performance. The degree of model generalizability across courses may depend on aspects, such as the similarity of the course setup, course material, the student cohort, or the teacher. Which of these contextual factors…
Descriptors: Prediction, Models, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Beasley, Zachariah J.; Piegl, Les A.; Rosen, Paul – IEEE Transactions on Learning Technologies, 2021
Accurately grading open-ended assignments in large or massive open online courses is nontrivial. Peer review is a promising solution but can be unreliable due to few reviewers and an unevaluated review form. To date, no work has leveraged sentiment analysis in the peer-review process to inform or validate grades or utilized aspect extraction to…
Descriptors: Case Studies, Online Courses, Assignments, Peer Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Olive, David Monllao; Huynh, Du Q.; Reynolds, Mark; Dougiamas, Martin; Wiese, Damyon – IEEE Transactions on Learning Technologies, 2019
A significant amount of research effort has been put into finding variables that can identify students at risk based on activity records available in learning management systems (LMS). These variables often depend on the context, for example, the course structure, how the activities are assessed or whether the course is entirely online or a…
Descriptors: Prediction, Identification, At Risk Students, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Botelho, Anthony F.; Varatharaj, Ashvini; Patikorn, Thanaporn; Doherty, Diana; Adjei, Seth A.; Beck, Joseph E. – IEEE Transactions on Learning Technologies, 2019
The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are…
Descriptors: Student Attrition, Student Behavior, Early Intervention, Identification