NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Zongkai; Yang, Juan; Rice, Kerry; Hung, Jui-Long; Du, Xu – IEEE Transactions on Learning Technologies, 2020
This article proposes two innovative approaches, the one-channel learning image recognition and the three-channel learning image recognition, to convert student's course involvements into images for early warning predictive analysis. Multiple experiments with 5235 students and 576 absolute/1728 relative input variables were conducted to verify…
Descriptors: Distance Education, At Risk Students, Artificial Intelligence, Man Machine Systems