NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Juan Antonio Martinez-Carrascal; Jorge Munoz-Gama; Teresa Sancho-Vinuesa – IEEE Transactions on Learning Technologies, 2024
Academic institutions dedicate a substantial effort to ensure the academic success of their students. At the course level, teachers recommend learning paths (RLPs) for students to guarantee the achievement of their learning outcomes. In terms of performance, these kinds of approaches are deemed more effective than others based uniquely on…
Descriptors: Online Courses, Mathematics Instruction, Undergraduate Students, Mathematics Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Deho, Oscar Blessed; Joksimovic, Srecko; Li, Jiuyong; Zhan, Chen; Liu, Jixue; Liu, Lin – IEEE Transactions on Learning Technologies, 2023
Many educational institutions are using predictive models to leverage actionable insights using student data and drive student success. A common task has been predicting students at risk of dropping out for the necessary interventions to be made. However, issues of discrimination by these predictive models based on protected attributes of students…
Descriptors: Learning Analytics, Models, Student Records, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Cleon Xavier; Luiz Rodrigues; Newarney Costa; Rodrigues Neto; Gabriel Alves; Taciana Pontual Falcao; Dragan Gasevic; Rafael Ferreira Mello – IEEE Transactions on Learning Technologies, 2025
Providing timely and personalized feedback on open-ended student responses is a challenge in education due to the increased workloads and time constraints educators face. While existing research has explored how learning analytic approaches can support feedback provision, previous studies have not sufficiently investigated educators' perspectives…
Descriptors: Teacher Empowerment, Learning Analytics, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Vo, Thi Ngoc Chau; Nguyen, Phung – IEEE Transactions on Learning Technologies, 2021
A course-level early final study status prediction task is to predict as soon as possible the final success of each student after studying a course. It is significant because each successful course accomplishment is required for a degree. Further, early predictions provide enough time to make necessary changes for ultimate success. This article…
Descriptors: Prediction, Academic Achievement, Data Collection, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Hodam; Chae, Younsoo; Kim, Suhye; Im, Chang-Hwan – IEEE Transactions on Learning Technologies, 2023
Owing to the rapid development of information and communication technologies, online or mobile learning content is widely available on the Internet. Unlike traditional face-to-face learning, online learning exhibits a critical limitation: real-time interactions between learners and teachers are generally not feasible in online learning. To…
Descriptors: College Students, Control Groups, Attention, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
So, Joseph Chi-Ho; Ho, Yik Him; Wong, Adam Ka-Lok; Chan, Henry C. B.; Tsang, Kia Ho-Yin; Chan, Ada Pui-Ling; Wong, Simon Chi-Wang – IEEE Transactions on Learning Technologies, 2023
Generic competence (GC) development is an integral part of higher education to provide holistic education and enhance student career development. It also plays a critical role in complementing the curriculum. Many tertiary institutions provide various GC development activities (GCDA). Moreover, institutions strongly need to further understand…
Descriptors: Predictor Variables, Higher Education, Online Courses, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Xiuyu Lin; Zehui Zhan; Xuebo Zhang; Jiayi Xiong – IEEE Transactions on Learning Technologies, 2024
The attribution of learning success or failure is crucial for students' learning and motivation. Effective attribution of their learning success or failure in the context of a small private online course (SPOC) could generate students' motivation toward learning success while an incorrect attribution would lead to a sense of helplessness. Based on…
Descriptors: Learning Analytics, Learning Processes, Learning Motivation, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Andriamiseza, Rialy; Silvestre, Franck; Parmentier, Jean-Francois; Broisin, Julien – IEEE Transactions on Learning Technologies, 2023
Formative assessment provides teachers with feedback to help them adapt their behavior. To manage the increasing number of students in higher education, technology-enhanced formative assessment tools can be used to maintain and hopefully improve teaching and learning quality, thanks to the high amount of data that are generated by their usage.…
Descriptors: Learning Analytics, Formative Evaluation, Evidence Based Practice, Peer Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Saint, John; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2020
The recent focus on learning analytics (LA) to analyze temporal dimensions of learning holds the promise of providing insights into latent constructs, such as learning strategy, self-regulated learning (SRL), and metacognition. These methods seek to provide an enriched view of learner behaviors beyond the scope of commonly used correlational or…
Descriptors: Undergraduate Students, Engineering Education, Learning Analytics, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Moonen-van Loon, Joyce M. W.; Govaerts, Marjan; Donkers, Jeroen; van Rosmalen, Peter – IEEE Transactions on Learning Technologies, 2022
Self-directed learning is generally considered a key competence in higher education. To enable self-directed learning, assessment practices increasingly embrace assessment for learning rather than the assessment of learning, shifting the focus from grades and scores to provision of rich, narrative, and personalized feedback. Students are expected…
Descriptors: Competency Based Education, Portfolios (Background Materials), Feedback (Response), Independent Study
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Anika; Garg, Deepak; Kumar, Parteek – IEEE Transactions on Learning Technologies, 2022
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the…
Descriptors: Markov Processes, Online Courses, Learning Management Systems, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Sung-Hee – IEEE Transactions on Learning Technologies, 2021
Participation dashboards in online discussions are learning support tools that can have a positive effect on learners' learning outcomes and satisfaction levels, but their effectiveness differs according to how learners recognize and interpret them. However, there is a lack of research investigating the effectiveness of visualization methods…
Descriptors: Asynchronous Communication, Discussion, Computer Mediated Communication, Peer Relationship
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Han; Zhong, Zihao; Tang, Lina; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2023
Small private online courses (SPOCs) have influenced teaching and learning in China's higher education. Learning management systems (LMSs) are important components in SPOCs. They can collect various data related to student behavior and support pedagogical interventions. This research used feature engineering and nearest neighbor smoothing models…
Descriptors: Online Courses, Learning Management Systems, Higher Education, Student Behavior