Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Grantee Submission | 14 |
Author
Amisha Jindal | 2 |
Ashish Gurung | 2 |
Chan, Jenny Yun-Chen | 2 |
Erin Ottmar | 2 |
Gobert, Janice | 2 |
Ji-Eun Lee | 2 |
Jionghao Lin | 2 |
Lee, Ji-Eun | 2 |
Ottmar, Erin | 2 |
Reilly Norum | 2 |
Sanika Nitin Patki | 2 |
More ▼ |
Publication Type
Reports - Research | 12 |
Speeches/Meeting Papers | 7 |
Journal Articles | 2 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Education Level
Junior High Schools | 9 |
Middle Schools | 9 |
Secondary Education | 9 |
Elementary Education | 6 |
Grade 8 | 3 |
Early Childhood Education | 2 |
Grade 2 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
More ▼ |
Audience
Location
Massachusetts | 2 |
Laws, Policies, & Programs
Assessments and Surveys
Patterns of Adaptive Learning… | 1 |
What Works Clearinghouse Rating

Devika Venugopalan; Ziwen Yan; Conrad Borchers; Jionghao Lin; Vincent Aleven – Grantee Submission, 2025
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning…
Descriptors: Homework, Computational Linguistics, Teaching Methods, Learning Analytics
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Natalie Brezack; Wynnie Chan; Mingyu Feng – Grantee Submission, 2024
This paper explores how learning analytics data provided by a math problem-solving educational technology platform informed 5th and 6th grade teachers' instructional decisions around socioemotional learning (SEL). MathSpring is an educational technology tool that provides teachers with data on students' effort, progress, and emotions while…
Descriptors: Social Emotional Learning, Mathematics Instruction, Teacher Attitudes, Comparative Analysis
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Adair, Amy; Owens, Jessica; Gobert, Janice – Grantee Submission, 2022
Providing high-level support to students on NGSS inquiry practices can be challenging; however, teacher dashboards can help teachers provide just-in-time instruction to students, both in-person and online. Prior work has shown some success with a dashboard that alerts teachers in real time on students' science inquiry difficulties, but teachers…
Descriptors: Epistemology, Network Analysis, Discourse Analysis, Educational Technology
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Lee, Ji-Eun; Hornburg, Caroline Byrd; Chan, Jenny Yun-Chen; Ottmar, Erin – Grantee Submission, 2021
We investigated the effects of proximal grouping of numbers, problem-solving goals to make 100, and prior knowledge on students' solution strategies in an online mathematics game. Logistic regression on 857 problem-level data points from 227 middle-school students showed that students were more likely to use productive solution strategies on…
Descriptors: Mathematics Instruction, Teaching Methods, Middle School Students, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning
Steven Moore; John Stamper; Norman Bier; Mary Jean Blink – Grantee Submission, 2020
In this paper we show how we can utilize human-guided machine learning techniques coupled with a learning science practitioner interface (DataShop) to identify potential improvements to existing educational technology. Specifically, we provide an interface for the classification of underlying Knowledge Components (KCs) to better model student…
Descriptors: Learning Analytics, Educational Improvement, Classification, Learning Processes
Peter Organisciak; Michele Newman; David Eby; Selcuk Acar; Denis Dumas – Grantee Submission, 2023
Purpose: Most educational assessments tend to be constructed in a close-ended format, which is easier to score consistently and more affordable. However, recent work has leveraged computation text methods from the information sciences to make open-ended measurement more effective and reliable for older students. This study asks whether such text…
Descriptors: Learning Analytics, Child Language, Semantics, Age Differences
Michelle M. Neumann; Jason L. Anthony; NoĆ© A. Erazo; David L. Neumann – Grantee Submission, 2019
The framework and tools used for classroom assessment can have significant impacts on teacher practices and student achievement. Getting assessment right is an important component in creating positive learning experiences and academic success. Recent government reports (e.g., United States, Australia) call for the development of systems that use…
Descriptors: Early Childhood Education, Futures (of Society), Educational Assessment, Evaluation Methods
Gobert, Janice D.; Kim, Yoon Jeon; Sao Pedro, Michael; Kennedy, Michael; Betts, Cameron – Grantee Submission, 2015
Many national policy documents underscore the importance of 21st century skills, including critical thinking. In parallel, recent American frameworks for K-12 Science education call for the development of critical thinking skills in science, also referred to as science inquiry skills/practices. Assessment of these skills is necessary, as indicated…
Descriptors: Learning Analytics, Science Education, Teaching Methods, 21st Century Skills
Hershkovitz, Arnon; Baker, Ryan S. J. d.; Gobert, Janice; Wixon, Michael; Sao Pedro, Michael – Grantee Submission, 2013
In recent years, an increasing number of analyses in Learning Analytics and Educational Data Mining (EDM) have adopted a "Discovery with Models" approach, where an existing model is used as a key component in a new EDM/analytics analysis. This article presents a theoretical discussion on the emergence of discovery with models, its…
Descriptors: Learning Analytics, Models, Learning Processes, Case Studies