NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Dae Woong Ham; Luke Miratrix – Grantee Submission, 2024
The consequence of a change in school leadership (e.g., principal turnover) on student achievement has important implications for education policy. The impact of such an event can be estimated via the popular Difference in Difference (DiD) estimator, where those schools with a turnover event are compared to a selected set of schools that did not…
Descriptors: Trend Analysis, Faculty Mobility, Academic Achievement, Principals
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
McNeish, Daniel; Harring, Jeffrey – Grantee Submission, 2019
Growth mixture models (GMMs) are prevalent for modeling unknown population heterogeneity via distinct latent classes. However, GMMs are riddled with convergence issues, often requiring researchers to atheoretically alter the model with cross-class constraints to obtain convergence. We discuss how within-class random effects in GMMs exacerbate…
Descriptors: Structural Equation Models, Classification, Computation, Statistical Analysis
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M. – Grantee Submission, 2016
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
Descriptors: Adolescents, Case Studies, Children, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Monroe, Scott; Cai, Li – Grantee Submission, 2015
This research is concerned with two topics in assessing model fit for categorical data analysis. The first topic involves the application of a limited-information overall test, introduced in the item response theory literature, to Structural Equation Modeling (SEM) of categorical outcome variables. Most popular SEM test statistics assess how well…
Descriptors: Structural Equation Models, Test Interpretation, Goodness of Fit, Item Response Theory
Cho, Sun-Joo; Preacher, Kristopher J.; Bottge, Brian A. – Grantee Submission, 2015
Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test--post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Intervention, Program Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Namkung, Jessica M.; Fuchs, Lynn S. – Grantee Submission, 2015
The purpose of this study was to examine the cognitive predictors of calculations and number line estimation with whole numbers and fractions. At-risk 4th-grade students (N = 139) were assessed on 7 domain-general abilities (i.e., working memory, processing speed, concept formation, language, attentive behavior, and nonverbal reasoning) and…
Descriptors: Predictor Variables, At Risk Students, Grade 4, Elementary School Students