NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Regan Mozer; Luke Miratrix – Grantee Submission, 2024
For randomized trials that use text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by trained human raters. This process, the current standard, is both time-consuming and limiting: even the largest human coding efforts are typically constrained to…
Descriptors: Artificial Intelligence, Coding, Efficiency, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Peer reviewed Peer reviewed
Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
Wilhelmina van Dijk; Cynthia U. Norris; Sara A. Hart – Grantee Submission, 2022
Randomized control trials are considered the pinnacle for causal inference. In many cases, however, randomization of participants in social work research studies is not feasible or ethical. This paper introduces the co-twin control design study as an alternative quasi-experimental design to provide evidence of causal mechanisms when randomization…
Descriptors: Twins, Research Design, Randomized Controlled Trials, Quasiexperimental Design
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
K. L. Anglin; A. Krishnamachari; V. Wong – Grantee Submission, 2020
This article reviews important statistical methods for estimating the impact of interventions on outcomes in education settings, particularly programs that are implemented in field, rather than laboratory, settings. We begin by describing the causal inference challenge for evaluating program effects. Then four research designs are discussed that…
Descriptors: Causal Models, Statistical Inference, Intervention, Program Evaluation
Peng Ding; Luke W. Miratrix – Grantee Submission, 2019
For binary experimental data, we discuss randomization-based inferential procedures that do not need to invoke any modeling assumptions. We also introduce methods for likelihood and Bayesian inference based solely on the physical randomization without any hypothetical super population assumptions about the potential outcomes. These estimators have…
Descriptors: Causal Models, Statistical Inference, Randomized Controlled Trials, Bayesian Statistics
Xinran Li; Peng Ding – Grantee Submission, 2018
Frequentists' inference often delivers point estimators associated with confidence intervals or sets for parameters of interest. Constructing the confidence intervals or sets requires understanding the sampling distributions of the point estimators, which, in many but not all cases, are related to asymptotic Normal distributions ensured by central…
Descriptors: Correlation, Intervals, Sampling, Evaluation Methods
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Peng Ding; Fan Li – Grantee Submission, 2018
Inferring causal effects of treatments is a central goal in many disciplines. The potential outcomes framework is a main statistical approach to causal inference, in which a causal effect is defined as a comparison of the potential outcomes of the same units under different treatment conditions. Because for each unit at most one of the potential…
Descriptors: Attribution Theory, Causal Models, Statistical Inference, Research Problems
Fan Yang; Peng Ding – Grantee Submission, 2018
In some randomized clinical trials, patients may die before the measurements of their outcomes. Even though randomization generates comparable treatment and control groups, the remaining survivors often differ significantly in background variables that are prognostic to the outcomes. This is called the truncation by death problem. Under the…
Descriptors: Randomized Controlled Trials, Medical Research, Patients, Death
Ding Peng; Avi Feller; Luke Miratrix – Grantee Submission, 2016
Applied researchers are increasingly interested in whether and how treatment effects vary in randomized evaluations, especially variation not explained by observed covariates. We propose a model-free approach for testing for the presence of such unexplained variation. To use this randomization-based approach, we must address the fact that the…
Descriptors: Randomized Controlled Trials, Statistical Inference, Evaluation Methods, Testing