Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 5 |
Descriptor
Source
Grantee Submission | 5 |
Author
Aaron R. Lyon | 1 |
Alex R. Dopp | 1 |
Amy Adair | 1 |
Annie Hale | 1 |
Baker, Ryan S. | 1 |
Beigman Klebanov, Beata | 1 |
Betheny Weigele | 1 |
Bryce D. McLeod | 1 |
Burstein, Jill | 1 |
Chani Clark | 1 |
Danielle S. McNamara | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Speeches/Meeting Papers | 3 |
Journal Articles | 2 |
Education Level
Elementary Education | 2 |
Higher Education | 2 |
Postsecondary Education | 2 |
Secondary Education | 2 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Emma R. Dear; Bryce D. McLeod; Nicole M. Peterson; Kevin S. Sutherland; Michael D. Broda; Alex R. Dopp; Aaron R. Lyon – Grantee Submission, 2024
Introduction: Due to usability, feasibility, and acceptability concerns, observational treatment fidelity measures are often challenging to deploy in schools. Teacher self-report fidelity measures with specific design features might address some of these barriers. This case study outlines a community-engaged, iterative process to adapt the…
Descriptors: Measures (Individuals), Data Collection, Observation, Learning Analytics
Danielle S. McNamara; Tracy Arner; Elizabeth Reilley; Paul Alvarado; Chani Clark; Thomas Fikes; Annie Hale; Betheny Weigele – Grantee Submission, 2022
Accounting for complex interactions between contextual variables and learners' individual differences in aptitudes and background requires building the means to connect and access learner data at large scales, across time, and in multiple contexts. This paper describes the ASU Learning@Scale (L@S) project to develop a digital learning network…
Descriptors: Electronic Learning, Educational Technology, Networks, Learning Analytics
Joe Olsen; Amy Adair; Janice Gobert; Michael Sao Pedro; Mariel O'Brien – Grantee Submission, 2022
Many national science frameworks (e.g., Next Generation Science Standards) argue that developing mathematical modeling competencies is critical for students' deep understanding of science. However, science teachers may be unprepared to assess these competencies. We are addressing this need by developing virtual lab performance assessments that…
Descriptors: Mathematical Models, Intelligent Tutoring Systems, Performance Based Assessment, Data Collection
Beigman Klebanov, Beata; Priniski, Stacy; Burstein, Jill; Gyawali, Binod; Harackiewicz, Judith; Thoman, Dustin – Grantee Submission, 2018
Collection and analysis of students' writing samples on a large scale is a part of the research agenda of the emerging writing analytics community that promises to deliver an unprecedented insight into characteristics of student writing. Yet with a large scale often comes variability of contexts in which the samples were produced--different…
Descriptors: Learning Analytics, Context Effect, Automation, Generalization
Gobert, Janice Darlene; Sao Pedro, Michael A.; Baker, Ryan S. – Grantee Submission, 2012
In this paper we explored whether engaging in two inquiry skills associated with data collection, designing controlled experiments and testing stated hypotheses, within microworlds for one physical science domain (density) impacted the acquisition of inquiry skills in another domain (phase change). To do so, we leveraged educational data mining…
Descriptors: Data Collection, Learning Analytics, Inquiry, Science Process Skills