NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission93
Audience
Researchers3
Laws, Policies, & Programs
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 93 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Marah Sutherland; David Fainstein; Taylor Lesner; Georgia L. Kimmel; Ben Clarke; Christian T. Doabler – Grantee Submission, 2024
Being able to understand, interpret, and critically evaluate data is necessary for all individuals in our society. Using the PreK-12 Guidelines for Assessment and Instruction in Statistics Education-II (GAISE-II; Bargagliotti et al., 2020) curriculum framework, the current paper outlines five evidence-based recommendations that teachers can use to…
Descriptors: Statistics Education, Mathematics Skills, Skill Development, Data Analysis
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Grantee Submission, 2022
Systems for learning and producing knowledge, such as career and technical education (CTE), often reproduce inequities unless an equity-focused lens is used when designing, implementing, and evaluating programs. This framework presents guidance for conducting CTE research with an intentional focus on equity. Developed by the CTE Research Network's…
Descriptors: Equal Education, Vocational Education, Educational Research, Program Administration
Peer reviewed Peer reviewed
Direct linkDirect link
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Betsy Wolf – Grantee Submission, 2024
The What Works Clearinghouse (WWC) at the Institute of Education Sciences reviews rigorous research on educational practices, policies, programs, and products with a goal of identifying 'what works' and making that information accessible to the public. One critique of the WWC is the need to more closely examine 'what works' for whom, in which…
Descriptors: Data Use, Educational Research, Student Characteristics, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Rashelle J. Musci; Joseph Kush; Elise T. Pas; Catherine P. Bradshaw – Grantee Submission, 2024
Given the increased focus of educational research on what works for whom and under what circumstances over the last decade, educational researchers are increasingly turning toward mixture models to identify heterogeneous subgroups among students. Such data are inherently nested, as students are nested within classrooms and schools. Yet there has…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Nonparametric Statistics, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander D. Latham; David A. Klingbeil – Grantee Submission, 2024
The visual analysis of data presented in time-series graphs are common in single-case design (SCD) research and applied practice in school psychology. A growing body of research suggests that visual analysts' ratings are often influenced by construct-irrelevant features including Y-axis truncation and compression of the number of data points per…
Descriptors: Intervention, School Psychologists, Graphs, Evaluation Methods
Declercq, Lies; Jamshidi, Laleh; Fernández-Castilla, Belen; Moeyaert, Mariola; Natasha, Beretvas S.; Ferron, John M.; Van den Noortgate, Wim – Grantee Submission, 2020
To conduct a multilevel meta-analysis of multiple single-case experimental design (SCED) studies, the individual participant data (IPD) can be analyzed in one or two stages. In the one-stage approach, a multilevel model is estimated based on the raw data. In the two-stage approach, an effect size is calculated for each participant and these effect…
Descriptors: Research Design, Data Analysis, Effect Size, Models
Hollands, Fiona M.; Pratt-Williams, Jaunelle; Shand, Robert – Grantee Submission, 2021
The purpose of these guidelines is to support the execution of cost analysis and cost-effectiveness analysis of educational programs. The steps involved in conducting a cost analysis are presented in four stages with explicit examples used throughout: designing your cost analysis, collecting cost data using the ingredients method, analyzing cost…
Descriptors: Cost Effectiveness, Educational Finance, Standards, Guidelines
Atsushi Miyaoka; Lauren Decker-Woodrow; Nancy Hartman; Barbara Booker; Erin Ottmar – Grantee Submission, 2023
More than ever in the past, researchers have access to broad, educationally relevant text data from sources such as literature databases (e.g., ERIC), an open-ended response from online courses/surveys, online discussion forums, digital essays, and social media. These advances in data availability can dramatically increase the possibilities for…
Descriptors: Coding, Models, Qualitative Research, Focus Groups
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alex J. Bowers – Grantee Submission, 2021
Educators globally are continually encouraged to use data to inform instructional improvement in schools, yet while there have been many recent innovations in data visualization and data science, educators are rarely included in dashboard co-design. On December 5 and 6, 2019, the Education Data Analytics Collaborative Workshop was held at Teachers…
Descriptors: Visual Aids, Evidence Based Practice, Data Use, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Danielle S. McNamara – Grantee Submission, 2024
Our primary objective in this Special Issue was to respond to potential criticisms of AIED in potentially "perpetuating poor pedagogic practices, datafication, and introducing classroom surveillance" and to comment on the future of AIED in its coming of age. My overarching assumption in response to this line of critiques is that humans…
Descriptors: Educational Practices, Educational Quality, Intelligent Tutoring Systems, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7