NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission22
Audience
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Batley, Prathiba Natesan; Hedges, Larry V. – Grantee Submission, 2021
Although statistical practices to evaluate intervention effects in SCEDs have gained prominence in the recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations both of which contribute to trend in the data. The question that arises is…
Descriptors: Bayesian Statistics, Models, Accuracy, Computation
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Grantee Submission, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. (2020) estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores,…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Moeyaert, Mariola; Akhmedjanova, Diana; Ferron, John; Beretvas, S. Natasha; Van den Noortgate, Wim – Grantee Submission, 2020
The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous design tactics to address a variety of research questions related to intervention effectiveness. Effect size indicators appropriate to quantify the magnitude and the direction of interventions have been recommended and intensively studied for…
Descriptors: Effect Size, Research Methodology, Research Design, Hierarchical Linear Modeling
Miocevic, Milica; Klaassen, Fayette; Geuke, Gemma; Moeyaert, Mariola; Maric, Marija – Grantee Submission, 2020
Single-Case Experimental Designs (SCEDs) have lately been recognized as a valuable alternative tolarge group studies. SCEDs form a great tool for the evaluation of treatment effectiveness in heterogeneous and low-incidence conditions, which are common in the field of communication disorders. Mediation analysis is indispensable in treatment…
Descriptors: Bayesian Statistics, Computation, Intervention, Case Studies
Weber, Sebastian; Gelman, Andrew; Lee, Daniel; Betancourt, Michael; Vehtari, Aki; Racine-Poon, Amy – Grantee Submission, 2018
Throughout the different phases of a drug development program, randomized trials are used to establish the tolerability, safety and efficacy of a candidate drug. At each stage one aims to optimize the design of future studies by extrapolation from the available evidence at the time. This includes collected trial data and relevant external data.…
Descriptors: Bayesian Statistics, Data Analysis, Drug Therapy, Pharmacology
Previous Page | Next Page »
Pages: 1  |  2