NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Tamara Broderick; Andrew Gelman; Rachael Meager; Anna L. Smith; Tian Zheng – Grantee Submission, 2022
Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and beyond. To aid the development of trust in these decisions, we develop a taxonomy delineating where trust in an analysis can break down: (1) in the translation of real-world goals to goals on a particular set of training data, (2) in the…
Descriptors: Taxonomy, Trust (Psychology), Algorithms, Probability
Heidemanns, Merlin; Gelman, Andrew; Morris, G. Elliott – Grantee Submission, 2020
During modern general election cycles, information to forecast the electoral outcome is plentiful. So-called fundamentals like economic growth provide information early in the cycle. Trial-heat polls become informative closer to Election Day. Our model builds on (Linzer, 2013) and is implemented in Stan (Team, 2020). We improve on the estimation…
Descriptors: Evaluation, Bayesian Statistics, Elections, Presidents
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods