NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20253
Since 202430
Since 2021 (last 5 years)104
Source
Grantee Submission104
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 104 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Christine M. White; Stephanie A. Estrera; Christopher Schatschneider; Sara A. Hart – Grantee Submission, 2024
Researchers in the education sciences, like those in other disciplines, are increasingly encountering requirements and incentives to make the data supporting empirical research available to others. However, the process of preparing and sharing research data can be daunting. The present article aims to support researchers who are beginning to think…
Descriptors: Data, Educational Research, Information Dissemination, Incentives
Peer reviewed Peer reviewed
Direct linkDirect link
Marah Sutherland; David Fainstein; Taylor Lesner; Georgia L. Kimmel; Ben Clarke; Christian T. Doabler – Grantee Submission, 2024
Being able to understand, interpret, and critically evaluate data is necessary for all individuals in our society. Using the PreK-12 Guidelines for Assessment and Instruction in Statistics Education-II (GAISE-II; Bargagliotti et al., 2020) curriculum framework, the current paper outlines five evidence-based recommendations that teachers can use to…
Descriptors: Statistics Education, Mathematics Skills, Skill Development, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Samantha Fu; Charles Davis; Jesse Rothstein; Aparna Ramesh; Evan White – Grantee Submission, 2022
Linking data together can be a powerful way for governments and researchers alike to tackle vexing public policy research problems. However, for researchers, finding ways to link data directly between two departments can often be more challenging than even obtaining the data in the first place. Even when a researcher develops the necessary…
Descriptors: Data Use, Research Methodology, Researchers, Privacy
Peer reviewed Peer reviewed
Direct linkDirect link
Eli Ben-Michael; Lindsay Page; Luke Keele – Grantee Submission, 2024
In a clustered observational study, a treatment is assigned to groups and all units within the group are exposed to the treatment. We develop a new method for statistical adjustment in clustered observational studies using approximate balancing weights, a generalization of inverse propensity score weights that solve a convex optimization problem…
Descriptors: Research Design, Statistical Data, Multivariate Analysis, Observation
Sy Han Chiou; Gongjun Xu; Jun Yan; Chiung-Yu Huang – Grantee Submission, 2023
Recurrent event analyses have found a wide range of applications in biomedicine, public health, and engineering, among others, where study subjects may experience a sequence of event of interest during follow-up. The R package reReg offers a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events,…
Descriptors: Data Analysis, Computer Software, Regression (Statistics), Models
Grantee Submission, 2022
Systems for learning and producing knowledge, such as career and technical education (CTE), often reproduce inequities unless an equity-focused lens is used when designing, implementing, and evaluating programs. This framework presents guidance for conducting CTE research with an intentional focus on equity. Developed by the CTE Research Network's…
Descriptors: Equal Education, Vocational Education, Educational Research, Program Administration
Peer reviewed Peer reviewed
Direct linkDirect link
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Grantee Submission, 2024
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Tianying; Chung, Gregory K. W. K. – Grantee Submission, 2022
A critical issue in using fine-grained gameplay data to measure learning processes is the development of indicators and the algorithms used to derive such indicators. Successful development--that is, developing traceable, interpretable, and sensitive-to-learning indicators--requires understanding the underlying theory, how the theory is…
Descriptors: Games, Data Collection, Learning Processes, Measurement
Betsy Wolf – Grantee Submission, 2024
The What Works Clearinghouse (WWC) at the Institute of Education Sciences reviews rigorous research on educational practices, policies, programs, and products with a goal of identifying 'what works' and making that information accessible to the public. One critique of the WWC is the need to more closely examine 'what works' for whom, in which…
Descriptors: Data Use, Educational Research, Student Characteristics, Context Effect
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Qiwei He; Qingzhou Shi; Elizabeth L. Tighe – Grantee Submission, 2023
Increased use of computer-based assessments has facilitated data collection processes that capture both response product data (i.e., correct and incorrect) and response process data (e.g., time-stamped action sequences). Evidence suggests a strong relationship between respondents' correct/incorrect responses and their problem-solving proficiency…
Descriptors: Artificial Intelligence, Problem Solving, Classification, Data Use
Wilhelmina Van Dijk; Cynthia U. Norris; Stephanie Al Otaiba; Christopher Schatschneider; Sara A. Hart – Grantee Submission, 2022
This manuscript provides information on datasets pertaining to Project KIDS. Datasets include behavioral and achievement data for over 4,000 students between five and twelve years old participating in nine randomized control trials of reading instruction and intervention between 2005-2011, and information on home environments of a subset of 442…
Descriptors: Data, Reading Instruction, Intervention, Family Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7