NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Schumacker, Randall; Morell, Monica; Wang, Yurou – Educational and Psychological Measurement, 2022
While hierarchical linear modeling is often used in social science research, the assumption of normally distributed residuals at the individual and cluster levels can be violated in empirical data. Previous studies have focused on the effects of nonnormality at either lower or higher level(s) separately. However, the violation of the normality…
Descriptors: Hierarchical Linear Modeling, Statistical Distributions, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification