Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 4 |
Descriptor
Source
Educational and Psychological… | 4 |
Author
Acosta, Sandra | 1 |
Bautista, Randy | 1 |
Cao, Chunhua | 1 |
Chen, Yi-Hsin | 1 |
Ferron, John | 1 |
Hamagami, Fumiaki | 1 |
Hishinuma, Earl S. | 1 |
Hsu, Hsien-Yuan | 1 |
Huang, Hung-Yu | 1 |
Johnson, Ronald C. | 1 |
Kim, Eun Sook | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Research | 4 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Students Evaluation of… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor – Educational and Psychological Measurement, 2017
Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…
Descriptors: Correlation, Goodness of Fit, Hierarchical Linear Modeling, Structural Equation Models
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C. – Educational and Psychological Measurement, 2014
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
Descriptors: Factor Analysis, Hierarchical Linear Modeling, Data Analysis, Structural Equation Models
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability