NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Wei; Konstantopoulos, Spyros – Educational and Psychological Measurement, 2023
Cluster randomized control trials often incorporate a longitudinal component where, for example, students are followed over time and student outcomes are measured repeatedly. Besides examining how intervention effects induce changes in outcomes, researchers are sometimes also interested in exploring whether intervention effects on outcomes are…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Longitudinal Studies, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Jungkyu; Yu, Hsiu-Ting – Educational and Psychological Measurement, 2016
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Descriptors: Hierarchical Linear Modeling, Nonparametric Statistics, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Cho, Sun-Joo; Preacher, Kristopher J. – Educational and Psychological Measurement, 2016
Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…
Descriptors: Error of Measurement, Error Correction, Multivariate Analysis, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Min; Lin, Tsung-I – Educational and Psychological Measurement, 2014
A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…
Descriptors: Regression (Statistics), Evaluation Methods, Indexes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups