NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Abdullahi Yusuf; Norah Md Noor; Shamsudeen Bello – Education and Information Technologies, 2024
Studies examining students' learning behavior predominantly employed rich video data as their main source of information due to the limited knowledge of computer vision and deep learning algorithms. However, one of the challenges faced during such observation is the strenuous task of coding large amounts of video data through repeated viewings. In…
Descriptors: Learning Analytics, Student Behavior, Video Technology, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Korchi, Adil; Dardor, Mohamed; Mabrouk, El Houssine – Education and Information Technologies, 2020
Learning techniques have proven their capacity to treat large amount of data. Most statistical learning approaches use specific size learning sets and create static models. Withal, in certain some situations such as incremental or active learning the learning process can work with only a smal amount of data. In this case, the search for algorithms…
Descriptors: Learning Analytics, Data, Computation, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
MD, Soumya; Krishnamoorthy, Shivsubramani – Education and Information Technologies, 2022
In recent times, Educational Data Mining and Learning Analytics have been abundantly used to model decision-making to improve teaching/learning ecosystems. However, the adaptation of student models in different domains/courses needs a balance between the generalization and context specificity to reduce the redundancy in creating domain-specific…
Descriptors: Predictor Variables, Academic Achievement, Higher Education, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Sahin, Muhittin; Ulucan, Aydin; Yurdugül, Halil – Education and Information Technologies, 2021
E-learning environments can store huge amounts of data on the interaction of learners with the content, assessment and discussion. Yet, after the identification of meaningful patterns or learning behaviour in the data, it is necessary to use these patterns to improve learning environments. It is notable that designs to benefit from these patterns…
Descriptors: Electronic Learning, Data Collection, Decision Making, Evaluation Criteria
Peer reviewed Peer reviewed
Direct linkDirect link
Ghallabi, Sameh; Essalmi, Fathi; Jemni, Mohamed; Kinshuk – Education and Information Technologies, 2020
With the emergence of technology, the personalization of e-learning systems is enhanced. These systems use a set of parameters for personalizing courses. However, in literature, these parameters are not based on classification and optimization algorithms to implement them in the cloud. Cloud computing is a new model of computing where standard and…
Descriptors: Electronic Learning, Internet, Information Storage, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Okoye, Kingsley; Arrona-Palacios, Arturo; Camacho-Zuñiga, Claudia; Achem, Joaquín Alejandro Guerra; Escamilla, Jose; Hosseini, Samira – Education and Information Technologies, 2022
Recent trends in "educational technology" have led to emergence of methods such as teaching analytics (TA) in understanding and management of the teaching-learning processes. Didactically, "teaching analytics" is one of the promising and emerging methods within the Education domain that have proved to be useful, towards…
Descriptors: Learning Analytics, Student Evaluation of Teacher Performance, Information Retrieval, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection