NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nehyba, Jan; Štefánik, Michal – Education and Information Technologies, 2023
Social sciences expose many cognitively complex, highly qualified, or fuzzy problems, whose resolution relies primarily on expert judgement rather than automated systems. One of such instances that we study in this work is a reflection analysis in the writings of student teachers. We share a hands-on experience on how these challenges can be…
Descriptors: Models, Language, Reflection, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – Education and Information Technologies, 2023
Interactive learning is a two-way learning method of learners independently by using computer and network technology. In the interactive relationships, interactive learning plays a role for learners to achieve the learning purpose, interactive learning has become an important effect of online learning, but it also has many problems that need to be…
Descriptors: Foreign Countries, Identification, Interaction, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Jingjing Long; Jiaxin Lin – Education and Information Technologies, 2024
English language learning students in China often feel challenged to learn English due to lack of motivation and confidence, pronunciation and grammar difference, lack of practice and people to communicate with etc., which affects students mental health. Adopting Big data and AI will help in overcoming these limitations as it provides personalized…
Descriptors: Foreign Countries, English Language Learners, College Students, Mental Health
Peer reviewed Peer reviewed
Direct linkDirect link
Feldman-Maggor, Yael; Barhoom, Sagiv; Blonder, Ron; Tuvi-Arad, Inbal – Education and Information Technologies, 2021
Research based on educational data mining conducted at academic institutions is often limited by the institutional policy with regard to the type of learning management system and the detail level of its activity reports. Often, researchers deal with only raw data. Such data normally contain numerous fictitious user activities that can create a…
Descriptors: Data Analysis, Educational Research, Data Processing, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qu – Education and Information Technologies, 2024
This paper introduces a Patron Counting and Analysis (PCA) system that leverages Wi-Fi-connection data to monitor space utilization and analyze visitor patterns in academic libraries. The PCA system offers real-time crowding information to the public and a comprehensive visitor analysis dashboard for library administrators. The system's…
Descriptors: Academic Libraries, Users (Information), Use Studies, Space Utilization
Peer reviewed Peer reviewed
Direct linkDirect link
Bousnguar, Hassan; Najdi, Lotfi; Battou, Amal – Education and Information Technologies, 2022
Forecasting the enrollments of new students in bachelor's systems became an urgent desire in the majority of higher education institutions. It represents an important stage in the process of making strategic decisions for new course's accreditation and optimization of resources. To gain a deep view of the educational forecasting context, the most…
Descriptors: Higher Education, Undergraduate Students, Enrollment Management, Strategic Planning
Peer reviewed Peer reviewed
Direct linkDirect link
Yürüm, Ozan Rasit; Taskaya-Temizel, Tugba; Yildirim, Soner – Education and Information Technologies, 2023
Video clickstream behaviors such as pause, forward, and backward offer great potential for educational data mining and learning analytics since students exhibit a significant amount of these behaviors in online courses. The purpose of this study is to investigate the predictive relationship between video clickstream behaviors and students' test…
Descriptors: Video Technology, Educational Technology, Learning Management Systems, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Sant-Geronikolou, Stavroula; Kouis, Dimitris; Koulouris, Alexandros – Education and Information Technologies, 2019
Library and information science experts around the globe are currently exploring ways of capitalizing student workflow data within library walls. Within this realm, the researchers designed and pilot-tested a user-driven lightweight application that envisions library as a crucial contributor of co-curricular data to learner profiles' contextual…
Descriptors: Academic Libraries, Computer Oriented Programs, Handheld Devices, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Adekitan, Aderibigbe Israel; Noma-Osaghae, Etinosa – Education and Information Technologies, 2019
The academic performance of a student in a university is determined by a number of factors, both academic and non-academic. Student that previously excelled at the secondary school level may lose focus due to peer pressure and social lifestyle while those who previously struggled due to family distractions may be able to focus away from home, and…
Descriptors: Foreign Countries, Data Collection, Educational Research, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Wook, Muslihah; Ismail, Suhaila; Yusop, Nurhafizah Moziyana Mohd; Ahmad, Siti Rohaidah; Ahmad, Arniyati – Education and Information Technologies, 2019
Previous studies on educational data mining (EDM) acceptance were focused on antecedents that were adopted from various models and theories. However, the ways in which such antecedents became the most important tools for educational improvement have not been researched in detail. This study aims to identify the priority antecedents of EDM…
Descriptors: Data Collection, Data Analysis, Educational Improvement, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Archana – Education and Information Technologies, 2017
The youth power to speak their mind, recommendations and opinions about various issues on social media cannot be ignored. There is a generated by students on social media websites like, facebook, Orkut, twitter etc. This paper focusses on the extraction of knowledge from the data floated by the University students on social websites in different…
Descriptors: Social Media, College Students, Data Processing, Web Sites
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Kyle M. L. – Education and Information Technologies, 2019
Institutions are applying methods and practices from data analytics under the umbrella term of "learning analytics" to inform instruction, library practices, and institutional research, among other things. This study reports findings from interviews with professional advisors at a public higher education institution. It reports their…
Descriptors: Academic Advising, Instructional Systems, Library Services, Institutional Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lansigan, Rolando R.; Moraga, Shirley D.; Batalla, Ma. Ymelda C.; Bringula, Rex P. – Education and Information Technologies, 2016
This descriptive study utilized a validated questionnaire that gathered data from freshmen of two different school years. Demographic profile, marketers (i.e., source of information of students about the school), influencers (i.e., significant others that persuaded them to enroll in the school), level of school choice, and level of consideration…
Descriptors: Foreign Countries, College Choice, Social Media, College Freshmen
Previous Page | Next Page »
Pages: 1  |  2