Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 26 |
| Since 2007 (last 20 years) | 56 |
Descriptor
| Bayesian Statistics | 57 |
| Models | 34 |
| Inferences | 16 |
| Learning Processes | 14 |
| Classification | 12 |
| Probability | 12 |
| Cognitive Processes | 11 |
| Decision Making | 11 |
| Language Acquisition | 10 |
| Prediction | 10 |
| Computation | 8 |
| More ▼ | |
Source
| Cognitive Science | 57 |
Author
| Griffiths, Thomas L. | 9 |
| Kalish, Michael L. | 3 |
| Lee, Michael D. | 3 |
| Chater, Nick | 2 |
| Lagnado, David A. | 2 |
| Lewandowsky, Stephan | 2 |
| Lu, Hongjing | 2 |
| Natalia Vélez | 2 |
| Rafferty, Anna N. | 2 |
| Vasishth, Shravan | 2 |
| Wagenmakers, Eric-Jan | 2 |
| More ▼ | |
Publication Type
| Journal Articles | 57 |
| Reports - Research | 44 |
| Reports - Evaluative | 9 |
| Reports - Descriptive | 3 |
| Opinion Papers | 1 |
Education Level
| Early Childhood Education | 1 |
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rafferty, Anna N.; Griffiths, Thomas L.; Klein, Dan – Cognitive Science, 2014
Analyzing the rate at which languages change can clarify whether similarities across languages are solely the result of cognitive biases or might be partially due to descent from a common ancestor. To demonstrate this approach, we use a simple model of language evolution to mathematically determine how long it should take for the distribution over…
Descriptors: Diachronic Linguistics, Models, Evolution, Language Acquisition
Phillips, Lawrence; Pearl, Lisa – Cognitive Science, 2015
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…
Descriptors: Language Acquisition, Models, Computational Linguistics, Credibility
Landy, David; Silbert, Noah; Goldin, Aleah – Cognitive Science, 2013
Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions…
Descriptors: Numbers, Computation, Adults, Models
Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P. – Cognitive Science, 2015
It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…
Descriptors: Generalization, Young Children, Inferences, Models
Rohde, Hannah; Frank, Michael C. – Cognitive Science, 2014
Although the language we encounter is typically embedded in rich discourse contexts, many existing models of processing focus largely on phenomena that occur sentence-internally. Similarly, most work on children's language learning does not consider how information can accumulate as a discourse progresses. Research in pragmatics, however,…
Descriptors: Caregiver Child Relationship, Discourse Analysis, Lexicology, Semantics
McClelland, James L.; Mirman, Daniel; Bolger, Donald J.; Khaitan, Pranav – Cognitive Science, 2014
In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation…
Descriptors: Perception, Comprehension, Cognitive Processes, Alphabets
Griffiths, Thomas L.; Lewandowsky, Stephan; Kalish, Michael L. – Cognitive Science, 2013
Information changes as it is passed from person to person, with this process of cultural transmission allowing the minds of individuals to shape the information that they transmit. We present mathematical models of cultural transmission which predict that the amount of information passed from person to person should affect the rate at which that…
Descriptors: Culture, Information Dissemination, Mathematical Models, Prediction
Fenton, Norman; Neil, Martin; Lagnado, David A. – Cognitive Science, 2013
A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…
Descriptors: Networks, Bayesian Statistics, Persuasive Discourse, Models
Yildirim, Ilker; Jacobs, Robert A. – Cognitive Science, 2012
How do people learn multisensory, or amodal, representations, and what consequences do these representations have for perceptual performance? We address this question by performing a rational analysis of the problem of learning multisensory representations. This analysis makes use of a Bayesian nonparametric model that acquires latent multisensory…
Descriptors: Perception, Sensory Integration, Multisensory Learning, Bayesian Statistics
Weisberg, Deena S.; Gopnik, Alison – Cognitive Science, 2013
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
Descriptors: Causal Models, Bayesian Statistics, Young Children, Imagination
Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric – Cognitive Science, 2012
The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…
Descriptors: Statistical Inference, Probability, Correlation, Causal Models
Culbertson, Jennifer; Smolensky, Paul – Cognitive Science, 2012
In this article, we develop a hierarchical Bayesian model of learning in a general type of artificial language-learning experiment in which learners are exposed to a mixture of grammars representing the variation present in real learners' input, particularly at times of language change. The modeling goal is to formalize and quantify hypothesized…
Descriptors: Models, Bayesian Statistics, Artificial Languages, Language Acquisition
Dillon, Brian; Dunbar, Ewan; Idsardi, William – Cognitive Science, 2013
To acquire one's native phonological system, language-specific phonological categories and relationships must be extracted from the input. The acquisition of the categories and relationships has each in its own right been the focus of intense research. However, it is remarkable that research on the acquisition of categories and the relations…
Descriptors: Phonology, Eskimo Aleut Languages, Language Acquisition, Phonetics
Frosch, Caren A.; McCormack, Teresa; Lagnado, David A.; Burns, Patrick – Cognitive Science, 2012
The application of the formal framework of causal Bayesian Networks to children's causal learning provides the motivation to examine the link between judgments about the causal structure of a system, and the ability to make inferences about interventions on components of the system. Three experiments examined whether children are able to make…
Descriptors: Bayesian Statistics, Intervention, Inferences, Attribution Theory
Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan – Cognitive Science, 2012
For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…
Descriptors: Bayesian Statistics, Reaction Time, Context Effect, Decision Making

Peer reviewed
Direct link
