NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stephen Ferrigno; Samuel J. Cheyette; Susan Carey – Cognitive Science, 2025
Complex sequences are ubiquitous in human mental life, structuring representations within many different cognitive domains--natural language, music, mathematics, and logic, to name a few. However, the representational and computational machinery used to learn abstract grammars and process complex sequences is unknown. Here, we used an artificial…
Descriptors: Sequential Learning, Cognitive Processes, Knowledge Representation, Training
Peer reviewed Peer reviewed
Direct linkDirect link
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Jenkins, Gavin W.; Samuelson, Larissa K.; Smith, Jodi R.; Spencer, John P. – Cognitive Science, 2015
It is unclear how children learn labels for multiple overlapping categories such as "Labrador," "dog," and "animal." Xu and Tenenbaum (2007a) suggested that learners infer correct meanings with the help of Bayesian inference. They instantiated these claims in a Bayesian model, which they tested with preschoolers and…
Descriptors: Generalization, Young Children, Inferences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chater, Nick; Brown, Gordon D. A. – Cognitive Science, 2008
The remarkable successes of the physical sciences have been built on highly general quantitative laws, which serve as the basis for understanding an enormous variety of specific physical systems. How far is it possible to construct universal principles in the cognitive sciences, in terms of which specific aspects of perception, memory, or decision…
Descriptors: Sciences, Scientific Principles, Models, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Griffiths, Thomas L.; Christian, Brian R.; Kalish, Michael L. – Cognitive Science, 2008
Many of the problems studied in cognitive science are inductive problems, requiring people to evaluate hypotheses in the light of data. The key to solving these problems successfully is having the right inductive biases--assumptions about the world that make it possible to choose between hypotheses that are equally consistent with the observed…
Descriptors: Logical Thinking, Bias, Identification, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan – Cognitive Science, 2008
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Descriptors: Bayesian Statistics, Generalization, Sciences, Models