NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sara Schley; Mel Chua; Joseph Le Doux; Veronica van Montfrans; Todd Fernandez – Biomedical Engineering Education, 2023
Human bodies vary widely: height, weight, blood volume, handedness, strength, and variations from disabilities, trauma, genetics, etc. Engineers must be trained to include human variance when designing human-interactive systems. Typically, this is not incorporated into mathematical and modeling focused courses. In the spring of 2019, one of three…
Descriptors: Human Body, Biomechanics, Cooperative Learning, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Steven Higbee; Sharon Miller; Karen Alfrey – Biomedical Engineering Education, 2025
Challenge: The Hodgkin-Huxley membrane conductance model has been featured in biomedical engineering (BME) curricula for decades. A typical BME assignment might require students to apply the relevant equations and parameters to model the generation of action potentials; however, there is opportunity for students to build and explore both…
Descriptors: Scientific Concepts, Biomedicine, Engineering Education, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Huei Leo; Nachamma Sockalingam; Mei Xuan Tan; Yajuan Zhu; Xiaojuan Khoo – Biomedical Engineering Education, 2025
Challenge Statement: Laboratory classes are indispensable in the teaching of biomedical engineering education, offering students invaluable hands-on experience and opportunities for practical application of theoretical knowledge. However, without a deep understanding of the underlying principles, students may find themselves merely going through…
Descriptors: Instructional Design, Inquiry, Active Learning, Biomedicine
Peer reviewed Peer reviewed
Direct linkDirect link
E. K. Bucholz – Biomedical Engineering Education, 2021
In the spring of 2020, brick and mortar colleges had to abruptly adapt to the reality of COVID-19 and transition to entirely online environments in a manner of weeks. This required a rapid (< 2 weeks) acquisition of knowledge and flexibility in using technology, most commonly Zoom. Upon completion of the semester, and after debriefing with…
Descriptors: Online Courses, Educational Environment, Biomedicine, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
James Long; Evan Dragich; Ann Saterbak – Biomedical Engineering Education, 2022
Recent advances in teaching, many of which incorporate elements of active learning, seek to provide students with learning experiences indicative of real-world problem solving. Problem-based learning (PBL) is one form of active learning that challenges students to address open-ended problems. In this work, we evaluate the efficacy of PBL in…
Descriptors: Problem Based Learning, Self Esteem, Undergraduate Students, Biomedicine
Peer reviewed Peer reviewed
Direct linkDirect link
Rucha Joshi; Dustin Hadley; Saivageethi Nuthikattu; Shierly Fok; Leora Goldbloom-Helzner; Matthew Curtis – Biomedical Engineering Education, 2022
Metacognitive skills can have enormous benefits for students within engineering courses. Unfortunately, these metacognitive skills tend to fall outside the content area of most courses, and consequently, they can often be neglected in instruction. In this context, previous research on concept mapping as a teaching strategy points to meaningful…
Descriptors: Online Courses, In Person Learning, Problem Solving, Biomedicine