Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 10 |
Descriptor
Anatomy | 10 |
Models | 10 |
Visualization | 10 |
Computer Simulation | 6 |
Teaching Methods | 6 |
Human Body | 5 |
Medical Students | 5 |
Medical Education | 4 |
Spatial Ability | 4 |
Computer Assisted Instruction | 3 |
Computer Software | 3 |
More ▼ |
Source
Anatomical Sciences Education | 10 |
Author
Publication Type
Journal Articles | 10 |
Reports - Research | 7 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 4 |
High Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
André de Sá Braga Oliveira; Luciano César P. C. Leonel; Edward R. LaHood; Bachtri T. Nguyen; Anahid Ehtemami; Stephen P. Graepel; Michael J. Link; Carlos D. Pinheiro-Neto; Nirusha Lachman; Jonathan M. Morris; Maria Peris-Celda – Anatomical Sciences Education, 2024
The 3D stereoscopic technique consists in providing the illusional perception of depth of a given object using two different images mimicking how the right and left eyes capture the object. Both images are slightly different and when overlapped gives a three-dimensional (3D) experience. Considering the limitations for establishing surgical…
Descriptors: Computer Simulation, Photography, Visualization, Models
Labranche, Leah; Wilson, Timothy D.; Terrell, Mark; Kulesza, Randy J. – Anatomical Sciences Education, 2022
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness…
Descriptors: Spatial Ability, Computer Simulation, Anatomy, Visualization
Bogomolova, Katerina; van der Ham, Ineke J. M.; Dankbaar, Mary E. W.; van den Broek, Walter W.; Hovius, Steven E. R.; van der Hage, Jos A.; Hierck, Beerend P. – Anatomical Sciences Education, 2020
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the…
Descriptors: Visualization, Educational Technology, Technology Uses in Education, Computer Simulation
Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N. – Anatomical Sciences Education, 2016
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…
Descriptors: Models, Anatomy, Computer Assisted Instruction, Teaching Methods
Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei – Anatomical Sciences Education, 2017
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…
Descriptors: Anatomy, Human Body, Models, Science Instruction
Fleagle, Timothy R.; Borcherding, Nicholas C.; Harris, Jennie; Hoffmann, Darren S. – Anatomical Sciences Education, 2018
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating…
Descriptors: Teaching Methods, Blended Learning, Anatomy, Science Instruction
Validation of Clay Modeling as a Learning Tool for the Periventricular Structures of the Human Brain
Akle, Veronica; Peña-Silva, Ricardo A.; Valencia, Diego M.; Rincón-Perez, Carlos W. – Anatomical Sciences Education, 2018
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a…
Descriptors: Anatomy, Visualization, Brain, Medical Education
Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady – Anatomical Sciences Education, 2015
The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…
Descriptors: Spatial Ability, Visualization, Computer Simulation, Models
Curcio, Daniella Franco; Behlau, Mara; Barros, Mirna Duarte; Smith, Ricardo Luiz – Anatomical Sciences Education, 2012
Multidisciplinary cooperation in health care requires a solid knowledge in the basic sciences for a common ground of communication. In speech pathology, these fundamentals improve the accuracy of descriptive diagnoses and support the development of new therapeutic techniques and strategies. The aim of this study is to briefly discuss the benefits…
Descriptors: Research Methodology, Speech Language Pathology, Physiology, Anatomy
Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan – Anatomical Sciences Education, 2009
Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…
Descriptors: Student Attitudes, Textbooks, Computer Simulation, Visualization