Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 10 |
| Since 2017 (last 10 years) | 15 |
| Since 2007 (last 20 years) | 18 |
Descriptor
| Anatomy | 18 |
| Computer Simulation | 18 |
| Visualization | 18 |
| Medical Education | 9 |
| Medical Students | 9 |
| Models | 7 |
| Spatial Ability | 7 |
| Human Body | 6 |
| Computer Software | 5 |
| Teaching Methods | 5 |
| Cognitive Processes | 4 |
| More ▼ | |
Source
| Anatomical Sciences Education | 18 |
Author
Publication Type
| Journal Articles | 18 |
| Reports - Research | 13 |
| Reports - Descriptive | 3 |
| Reports - Evaluative | 2 |
Education Level
| Higher Education | 12 |
| Postsecondary Education | 10 |
Audience
Location
| Sweden | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Learning Style Inventory | 1 |
| Vandenberg Mental Rotations… | 1 |
What Works Clearinghouse Rating
Satoru Muro; Keisuke Miyosawa; Kumiko Yamaguchi; Kentaro Okamoto; Shota Okamoto; Tomoki Itamiya; Keiichi Akita – Anatomical Sciences Education, 2025
3D visualization tools have been developed to assist in the anatomical learning of medical students, but the evidence on the effectiveness of these tools is inconsistent. Conventional 3D materials are often displayed on 2D screens, which can limit their educational impact. This study evaluates the effectiveness of the presentation of 3D learning…
Descriptors: Computer Simulation, Visualization, Anatomy, Instructional Materials
Yanyi Wu – Anatomical Sciences Education, 2025
The increasing adoption of advanced simulation technologies (virtual reality, augmented reality, sophisticated mannequins) in anatomical science education offers undeniable pedagogical advantages, including safe practice environments and enhanced visualization of complex structures. This article explores the simulation paradox, arguing that the…
Descriptors: Anatomy, Computer Simulation, Computer Uses in Education, Visualization
André de Sá Braga Oliveira; Luciano César P. C. Leonel; Edward R. LaHood; Bachtri T. Nguyen; Anahid Ehtemami; Stephen P. Graepel; Michael J. Link; Carlos D. Pinheiro-Neto; Nirusha Lachman; Jonathan M. Morris; Maria Peris-Celda – Anatomical Sciences Education, 2024
The 3D stereoscopic technique consists in providing the illusional perception of depth of a given object using two different images mimicking how the right and left eyes capture the object. Both images are slightly different and when overlapped gives a three-dimensional (3D) experience. Considering the limitations for establishing surgical…
Descriptors: Computer Simulation, Photography, Visualization, Models
Pettersson, Anna F.; Karlgren, Klas; Al-Saadi, Jonathan; Hjelmqvist, Hans; Meister, Björn; Zeberg, Hugo; Silén, Charlotte – Anatomical Sciences Education, 2023
Learning anatomy holds specific challenges, like the appreciation of three-dimensional relationships between anatomical structures. So far, there is limited knowledge about how students construct their understanding of topographic anatomy. By understanding the processes by which students learn anatomical structures in 3D, educators will be better…
Descriptors: Anatomy, Visualization, Computer Simulation, Computer Uses in Education
Geoffroy P. J. C. Noel; Isabella Xiao; Maher Chaouachi; Alexandru Ilie; Jeremy O'Brien; Sean C. McWatt – Anatomical Sciences Education, 2025
Mixed reality (MR) offers a way to visualize and manipulate complex digital objects in three dimensions, which is particularly beneficial for human anatomy. However, implementing MR effectively requires a deep understanding of its effects on cognitive processes. The purpose of this study was to evaluate cognitive markers of students' engagement…
Descriptors: Cognitive Processes, Difficulty Level, Medical Students, Trainees
Duraes, Martha; Akkari, Mohamed; Jeandel, Clément; Moreno, Benjamin; Subsol, Gérard; Duflos, Claire; Captier, Guillaume – Anatomical Sciences Education, 2022
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was…
Descriptors: Medical Students, Medical Education, Anatomy, Laboratory Procedures
Jean Langlois; Stanley J. Hamstra; Yvan Dagenais; Renald Lemieux; Marc Lecourtois; Elizabeth Yetisir; Christian Bellemare; Germain Bergeron; George A. Wells – Anatomical Sciences Education, 2024
Haptic perception is used in the anatomy laboratory with the handling of three-dimensional (3D) prosections, dissections, and synthetic models of anatomical structures. Vision-based spatial ability has been found to correlate with performance on tests of 3D anatomy knowledge in previous studies. The objective was to explore whether haptic-based…
Descriptors: Tactual Perception, Visual Perception, Visual Acuity, Spatial Ability
Bogomolova, Katerina; Sam, Amir H.; Misky, Adam T.; Gupte, Chinmay M.; Strutton, Paul H.; Hurkxkens, Thomas J.; Hierck, Beerend P. – Anatomical Sciences Education, 2021
In anatomical education three-dimensional (3D) visualization technology allows for active and stereoscopic exploration of anatomy and can easily be adopted into medical curricula along with traditional 3D teaching methods. However, most often knowledge is still assessed with two-dimensional (2D) paper-and-pencil tests. To address the growing…
Descriptors: Anatomy, Science Education, Teaching Methods, Educational Technology
Muhiddin Furkan Kiliç; Afife Zehra Yurtsever; Feyza Açikgöz; Beste Basgut; Burcu Mavi; Ezgihan Ertuç; Sinem Sevim; Tuhan Oruk; Yavuz Selim Kiyak; Tuncay Peker – Anatomical Sciences Education, 2025
Traditional education often relies on passive learning approaches, whereas modern medical students increasingly seek interactive, technology-enhanced experiences. Despite the growing use of digital tools in anatomy education, there remains a lack of structured, student-centered 3D modeling courses embedded within the undergraduate medical…
Descriptors: Anatomy, Medical Education, Medical Students, Learner Engagement
Bogomolova, Katerina; Vorstenbosch, Marc A. T. M.; El Messaoudi, Inssaf; Holla, Micha; Hovius, Steven E. R.; van der Hage, Jos A.; Hierck, Beerend P. – Anatomical Sciences Education, 2023
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and…
Descriptors: Anatomy, Visualization, Technology, Difficulty Level
Labranche, Leah; Wilson, Timothy D.; Terrell, Mark; Kulesza, Randy J. – Anatomical Sciences Education, 2022
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness…
Descriptors: Spatial Ability, Computer Simulation, Anatomy, Visualization
Kurul, Ramazan; Ögün, Muhammed Nur; Neriman Narin, Ayse; Avci, Sebnem; Yazgan, Beyza – Anatomical Sciences Education, 2020
The aim of this study was to investigate the effect of immersive three-dimensional (3D) interactive virtual reality (VR) on anatomy training in undergraduate physical therapy students. A total of 72 students were included in the study. The students were randomized into control (n = 36) and VR (n = 36) group according to the Kolb Learning Style…
Descriptors: Undergraduate Students, Computer Simulation, Anatomy, Physical Therapy
Bogomolova, Katerina; van der Ham, Ineke J. M.; Dankbaar, Mary E. W.; van den Broek, Walter W.; Hovius, Steven E. R.; van der Hage, Jos A.; Hierck, Beerend P. – Anatomical Sciences Education, 2020
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the…
Descriptors: Visualization, Educational Technology, Technology Uses in Education, Computer Simulation
Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas – Anatomical Sciences Education, 2018
Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…
Descriptors: Anatomy, Visualization, Computer Simulation, Motion
Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei – Anatomical Sciences Education, 2017
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…
Descriptors: Anatomy, Human Body, Models, Science Instruction
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
