NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 49 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Hoffman, Heather J.; Elmi, Angelo F. – Journal of Statistics and Data Science Education, 2021
Teaching students statistical programming languages while simultaneously teaching them how to debug erroneous code is challenging. The traditional programming course focuses on error-free learning in class while students' experiences outside of class typically involve error-full learning. While error-free teaching consists of focused lectures…
Descriptors: Statistics Education, Programming Languages, Troubleshooting, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doan, Thanh-Nam; Sahebi, Shaghayegh – International Educational Data Mining Society, 2019
One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The…
Descriptors: Data Analysis, Performance Factors, Prediction, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andrews-Todd, Jessica; Forsyth, Carol; Steinberg, Jonathan; Rupp, André – International Educational Data Mining Society, 2018
In this paper, we describe a theoretically-grounded data mining approach to identify types of collaborative problem solvers based on students' interactions with an online simulation-based task about electronics concepts. In our approach, we developed an ontology to identify the theoretically-grounded features of collaborative problem solving…
Descriptors: Problem Solving, Cooperation, Student Behavior, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy; Liew, Chun Wai – International Educational Data Mining Society, 2018
Recent works on Intelligent Tutoring Systems have focused on more complicated knowledge domains, which pose challenges in automated assessment of student performance. In particular, while the system can log every user action and keep track of the student's solution state, it is unable to determine the hidden intermediate steps leading to such…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Data Analysis, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Lohrer, Johannes-Y.; Kaltenthaler, Daniel; Kröger, Peer – International Association for Development of the Information Society, 2016
In this paper, we describe a framework for data analysis that can be embedded into a base application. Since it is important to analyze the data directly inside the application where the data is entered, a tool that allows the scientists to easily work with their data, supports and motivates the execution of further analysis of their data, which…
Descriptors: Data Analysis, Expertise, Models, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kerrigan, Simon; Feng, Shihui; Vuthaluru, Rupa; Ifenthaler, Dirk; Gibson, David – International Association for Development of the Information Society, 2019
Problem-solving and collaboration are regarded as an essential part of 21st Century Skills. This study describes a task-focused approach to network analysis of trace data from collaborative problem-solving in a digital learning environment. The analysis framework builds and expands upon previous analyses of social ties as well as discourse…
Descriptors: Network Analysis, Problem Solving, Task Analysis, Data Analysis
Eagle, Michael; Hicks, Drew; Barnes, Tiffany – International Educational Data Mining Society, 2015
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
Descriptors: Problem Solving, Prediction, Intelligent Tutoring Systems, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Duquette, Cheryll – Journal of Research in Special Educational Needs, 2016
The purpose of this research was to examine the experiences of four pre-service teachers (PSTs) implementing differentiated instruction (DI) using action research. During a practicum, the participants recorded data about their use of DI and took part in collaborative reflective discussions with a professor. The data were analysed inductively. It…
Descriptors: Inclusion, Preservice Teachers, Individualized Instruction, Action Research
Castro, Francisco Enrique Vicente; Adjei, Seth; Colombo, Tyler; Heffernan, Neil – International Educational Data Mining Society, 2015
A great deal of research in educational data mining is geared towards predicting student performance. Bayesian Knowledge Tracing, Performance Factors Analysis, and the different variations of these have been introduced and have had some success at predicting student knowledge. It is worth noting, however, that very little has been done to…
Descriptors: Models, Student Behavior, Intelligent Tutoring Systems, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhou, Guojing; Wang, Jianxun; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
In this study, we applied decision trees (DT) to extract a compact set of pedagogical decision-making rules from an original "full" set of 3,702 Reinforcement Learning (RL)- induced rules, referred to as the DT-RL rules and Full-RL rules respectively. We then evaluated the effectiveness of the two rule sets against a baseline Random…
Descriptors: Learning Theories, Teaching Methods, Decision Making, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yeung, Cheuk Yu; Shum, Kam Hong; Hui, Lucas Chi Kwong; Chu, Samuel Kai Wah; Chan, Tsing Yun; Kuo, Yung Nin; Ng, Yee Ling – International Association for Development of the Information Society, 2017
Attributes of teaching and learning contexts provide rich information about how students participate in learning activities. By tracking and analyzing snapshots of these attributes captured continuously throughout the duration of the learning activities, teachers can identify individual students who need special attention and apply different…
Descriptors: Mathematics Instruction, Educational Technology, Technology Uses in Education, Handheld Devices
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4