Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 16 |
Descriptor
Source
International Educational… | 11 |
Grantee Submission | 2 |
International Association for… | 2 |
International Group for the… | 2 |
Mathematics Education… | 1 |
Author
Heffernan, Neil T. | 2 |
Adjei, Seth A. | 1 |
Allen, Laura K. | 1 |
Andrews, Dee H. | 1 |
Antic, Dejan | 1 |
Atsushi Shimada | 1 |
Baral, Sami | 1 |
Baraniuk, Richard | 1 |
Benachamardi, Priyanka | 1 |
Bland, Ray | 1 |
Botarleanu, Robert-Mihai | 1 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 26 |
Reports - Research | 18 |
Reports - Descriptive | 5 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 3 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
Primary Education | 1 |
Audience
Location
Australia | 1 |
Canada | 1 |
Serbia | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tsubasa Minematsu; Atsushi Shimada – International Association for Development of the Information Society, 2024
In using large language models (LLMs) for education, such as distractors in multiple-choice questions and learning by teaching, error-containing content is used. Prompt tuning and retraining LLMs are possible ways of having LLMs generate error-containing sentences in the learning content. However, there needs to be more discussion on how to tune…
Descriptors: Educational Technology, Technology Uses in Education, Error Patterns, Sentences
Cai, Zhiqiang; Marquart, Cody; Shaffer, David W. – International Educational Data Mining Society, 2022
Regular expression (regex) coding has advantages for text analysis. Humans are often able to quickly construct intelligible coding rules with high precision. That is, researchers can identify words and word patterns that correctly classify examples of a particular concept. And, it is often easy to identify false positives and improve the regex…
Descriptors: Coding, Classification, Artificial Intelligence, Engineering Education
Gorgun, Guher; Yildirim-Erbasli, Seyma N.; Epp, Carrie Demmans – International Educational Data Mining Society, 2022
The need to identify student cognitive engagement in online-learning settings has increased with our use of online learning approaches because engagement plays an important role in ensuring student success in these environments. Engaged students are more likely to complete online courses successfully, but this setting makes it more difficult for…
Descriptors: Online Courses, Group Discussion, Learner Engagement, Student Participation
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2022
Automated scoring of student language is a complex task that requires systems to emulate complex and multi-faceted human evaluation criteria. Summary scoring brings an additional layer of complexity to automated scoring because it involves two texts of differing lengths that must be compared. In this study, we present our approach to automate…
Descriptors: Automation, Scoring, Documentation, Likert Scales
Baral, Sami; Botelho, Anthony F.; Erickson, John A.; Benachamardi, Priyanka; Heffernan, Neil T. – International Educational Data Mining Society, 2021
Open-ended questions in mathematics are commonly used by teachers to monitor and assess students' deeper conceptual understanding of content. Student answers to these types of questions often exhibit a combination of language, drawn diagrams and tables, and mathematical formulas and expressions that supply teachers with insight into the processes…
Descriptors: Scoring, Automation, Mathematics Tests, Student Evaluation
Miao, Dezhuang; Dong, Yu; Lu, Xuesong – International Educational Data Mining Society, 2020
In colleges, programming is increasingly becoming a general education course of almost all STEM majors as well as some art majors, resulting in an emerging demand for scalable programming education. To support scalable education, teaching activities such as grading and feedback have to be automated. Recently, online judge systems have been…
Descriptors: Programming, Prediction, Error Patterns, Models
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
E-Learning Model for Training of Drivers in Traffic Based on Frequent Mistakes on the Practical Exam
Jovanov, Goran; Vasiljevic, Jovica; Jovanov, Nemanja; Antic, Dejan; Vranjes, Djordje – International Association for Development of the Information Society, 2019
This paper presents the previous experience in the licensing process of the examiners at the driving test in the Republic of Serbia, with an analysis of the way in which the examiners assess the polygonal actions. The analysis covers the most common mistakes that have been registered with the examiners as well as in the candidates in the training.…
Descriptors: Foreign Countries, Driver Education, Educational Technology, Electronic Learning
Zhang, Mengxue; Wang, Zichao; Baraniuk, Richard; Lan, Andrew – International Educational Data Mining Society, 2021
Feedback on student answers and even during intermediate steps in their solutions to open-ended questions is an important element in math education. Such feedback can help students correct their errors and ultimately lead to improved learning outcomes. Most existing approaches for automated student solution analysis and feedback require manually…
Descriptors: Mathematics Instruction, Teaching Methods, Intelligent Tutoring Systems, Error Patterns
Chen, Binglin; West, Matthew; Ziles, Craig – International Educational Data Mining Society, 2018
This paper attempts to quantify the accuracy limit of "nextitem-correct" prediction by using numerical optimization to estimate the student's probability of getting each question correct given a complete sequence of item responses. This optimization is performed without an explicit parameterized model of student behavior, but with the…
Descriptors: Accuracy, Probability, Student Behavior, Test Items
An Application of a Random Mixture Nominal Item Response Model for Investigating Instruction Effects
Choi, Hye-Jeong; Cohen, Allan S.; Bottge, Brian A. – Grantee Submission, 2016
The purpose of this study was to apply a random item mixture nominal item response model (RIM-MixNRM) for investigating instruction effects. The host study design was a pre-test-and-post-test, school-based cluster randomized trial. A RIM-MixNRM was used to identify students' error patterns in mathematics at the pre-test and the post-test.…
Descriptors: Item Response Theory, Instructional Effectiveness, Test Items, Models
Streeter, Matthew – International Educational Data Mining Society, 2015
We show that student learning can be accurately modeled using a mixture of learning curves, each of which specifies error probability as a function of time. This approach generalizes Knowledge Tracing [7], which can be viewed as a mixture model in which the learning curves are step functions. We show that this generality yields order-of-magnitude…
Descriptors: Probability, Error Patterns, Learning Processes, Models
Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
A growing body of research suggests that accounting for student specific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a…
Descriptors: Models, Regression (Statistics), Learning, Classification
Klingler, Severin; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2015
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge…
Descriptors: Intelligent Tutoring Systems, Knowledge Level, Item Response Theory, Prediction
Van Inwegen, Eric G.; Adjei, Seth A.; Wang, Yan; Heffernan, Neil T. – International Educational Data Mining Society, 2015
User modelling algorithms such as Performance Factors Analysis and Knowledge Tracing seek to determine a student's knowledge state by analyzing (among other features) right and wrong answers. Anyone who has ever graded an assignment by hand knows that some answers are "more wrong" than others; i.e. they display less of an understanding…
Descriptors: Knowledge Level, Performance Factors, Error Patterns, Mathematics
Previous Page | Next Page »
Pages: 1 | 2