NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yumou Wei; Paulo Carvalho; John Stamper – International Educational Data Mining Society, 2025
Educators evaluate student knowledge using knowledge component (KC) models that map assessment questions to KCs. Still, designing KC models for large question banks remains an insurmountable challenge for instructors who need to analyze each question by hand. The growing use of Generative AI in education is expected only to aggravate this chronic…
Descriptors: Artificial Intelligence, Cluster Grouping, Student Evaluation, Test Items
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bogdan Yamkovenko; Charlie A. R. Hogg; Maya Miller-Vedam; Phillip Grimaldi; Walt Wells – International Educational Data Mining Society, 2025
Knowledge tracing (KT) models predict how students will perform on future interactions, given a sequence of prior responses. Modern approaches to KT leverage "deep learning" techniques to produce more accurate predictions, potentially making personalized learning paths more efficacious for learners. Many papers on the topic of KT focus…
Descriptors: Algorithms, Artificial Intelligence, Models, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang Shi; Tiffany Barnes; Min Chi; Thomas Price – International Educational Data Mining Society, 2024
Knowledge tracing (KT) models have been a commonly used tool for tracking students' knowledge status. Recent advances in deep knowledge tracing (DKT) have demonstrated increased performance for knowledge tracing tasks in many datasets. However, interpreting students' states on single knowledge components (KCs) from DKT models could be challenging…
Descriptors: Algorithms, Artificial Intelligence, Models, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Meng Cao; Philip I. Pavlik Jr.; Wei Chu; Liang Zhang – International Educational Data Mining Society, 2024
In category learning, a growing body of literature has increasingly focused on exploring the impacts of interleaving in contrast to blocking. The sequential attention hypothesis posits that interleaving draws attention to the differences between categories while blocking directs attention toward similarities within categories [4, 5]. Although a…
Descriptors: Attention, Algorithms, Artificial Intelligence, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mohammad Arif Ul Alam; Geeta Verma; Eumie Jhong; Justin Barber; Ashis Kumer Biswas – International Educational Data Mining Society, 2025
The growing demand for microcredentials in education and workforce development necessitates scalable, accurate, and fair assessment systems for both soft and hard skills based on students' lived experience narratives. Existing approaches struggle with the complexities of hierarchical credentialing and the mitigation of algorithmic bias related to…
Descriptors: Microcredentials, Sex, Ethnicity, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eyüp Yurt – International Society for Technology, Education, and Science, 2024
This study addresses the opportunities presented by AI applications in education and the ethical issues brought about by this technology. AI in education holds excellent potential in personalized learning, automated assessment and feedback, and monitoring and analyzing student performance. However, using these technologies also raises ethical…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Ethics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Shchepakin; Sreecharan Sankaranarayanan; Dawn Zimmaro – International Educational Data Mining Society, 2024
Bayesian Knowledge Tracing (BKT) is a probabilistic model of a learner's state of mastery for a knowledge component. The learner's state is a "hidden" binary variable updated based on the correctness of the learner's responses to questions corresponding to that knowledge component. The parameters used for this update are inferred/learned…
Descriptors: Algorithms, Bayesian Statistics, Probability, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Md. Mirajul Islam; Xi Yang; John Hostetter; Adittya Soukarjya Saha; Min Chi – International Educational Data Mining Society, 2024
A key challenge in e-learning environments like Intelligent Tutoring Systems (ITSs) is to induce effective pedagogical policies efficiently. While Deep Reinforcement Learning (DRL) often suffers from "sample inefficiency" and "reward function" design difficulty, Apprenticeship Learning (AL) algorithms can overcome them.…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Teaching Methods, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hyeongdon Moon; Richard Lee Davis; Seyed Parsa Neshaei; Pierre Dillenbourg – International Educational Data Mining Society, 2025
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with…
Descriptors: Artificial Intelligence, Natural Language Processing, Automation, Information Management
Peer reviewed Peer reviewed
Direct linkDirect link
Crimmins, Patricia Beron; Foster, Jonathan K.; Youngs, Peter A. – AERA Online Paper Repository, 2023
Recent research suggests that neural networks, algorithms designed to reflect the human brain's behavior to recognize patterns, can be used to develop data dashboards that provide teachers with more specific and frequent feedback to improve their instruction (Jacobs et al., 2022). This qualitative case study examines six teachers' perceptions of…
Descriptors: Artificial Intelligence, Algorithms, Teacher Attitudes, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Natalia Stanusch – International Society for Technology, Education, and Science, 2023
This study offers an analysis and comparison of search results from Google concerning the topic of Artificial Intelligence (AI) in two geographically and politically different contexts: the United States and Italy. As new AI systems, tools, and solutions are developed and implemented in each sector of human life on a global scale, certain…
Descriptors: Foreign Countries, Search Engines, Artificial Intelligence, Cross Cultural Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Levin, Nathan; Baker, Ryan S.; Nasiar, Nidhi; Fancsali, Stephen; Hutt, Stephen – International Educational Data Mining Society, 2022
Research into "gaming the system" behavior in intelligent tutoring systems (ITS) has been around for almost two decades, and detection has been developed for many ITSs. Machine learning models can detect this behavior in both real-time and in historical data. However, intelligent tutoring system designs often change over time, in terms…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Models, Cheating
Oscar Clivio; Avi Feller; Chris Holmes – Grantee Submission, 2024
Reweighting a distribution to minimize a distance to a target distribution is a powerful and flexible strategy for estimating a wide range of causal effects, but can be challenging in practice because optimal weights typically depend on knowledge of the underlying data generating process. In this paper, we focus on design-based weights, which do…
Descriptors: Evaluation Methods, Causal Models, Error of Measurement, Guidelines
Previous Page | Next Page »
Pages: 1  |  2