NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 202412
Since 2021 (last 5 years)101
Audience
What Works Clearinghouse Rating
Showing 1 to 15 of 101 results Save | Export
Fitzallen, Noleine; Watson, Jane – Mathematics Education Research Group of Australasia, 2023
This paper reports on students' experiences of describing and representing variation in hypothetical data. Fifty-six students (8-9 years-old) experienced collecting and working with quantitative data for two years as part of a STEM education project. The task described here was an end-of-year survey question, with three parts about a hypothetical…
Descriptors: Elementary School Students, STEM Education, Foreign Countries, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Haim, Aaron; Gyurcsan, Robert; Baxter, Chris; Shaw, Stacy T.; Heffernan, Neil T. – International Educational Data Mining Society, 2023
Despite increased efforts to assess the adoption rates of open science and robustness of reproducibility in sub-disciplines of education technology, there is a lack of understanding of why some research is not reproducible. Prior work has taken the first step toward assessing reproducibility of research, but has assumed certain constraints which…
Descriptors: Conferences (Gatherings), Educational Research, Replication (Evaluation), Access to Information
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kai Li – International Association for Development of the Information Society, 2023
Assessing students' performance in online learning could be executed not only by the traditional forms of summative assessments such as using essays, assignments, and a final exam, etc. but also by more formative assessment approaches such as interaction activities, forum posts, etc. However, it is difficult for teachers to monitor and assess…
Descriptors: Student Evaluation, Online Courses, Electronic Learning, Computer Literacy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stephen Downes – International Association for Development of the Information Society, 2023
Data literacy is the ability to collect, manage, evaluate, and apply data, in a critical manner. It is a relatively new field of study, dating only from the 2010s. It includes the skills necessary to discover and access data, manipulate data, evaluate data quality, conduct analysis using data, interpret results of analyses, and understand the…
Descriptors: Statistics Education, Data Analysis, Ethics, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aziman Abdullah; Pang Jieyu – International Society for Technology, Education, and Science, 2023
It is essential to save lives during emergencies not only in hospitals but also in colleges and universities. Failure to identify risks and take prompt action during catastrophes and emergency situations could result in the loss of life and property for the campus community. This research aims to explore the feasibility of using data analytics to…
Descriptors: Emergency Programs, Information Technology, Planning, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bulathwela, Sahan; Verma, Meghana; Pérez-Ortiz, María; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2022
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces: (1) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to…
Descriptors: Video Technology, Lecture Method, Data Analysis, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Nirmal Ghimire; Kouider Mokhtari – AERA Online Paper Repository, 2024
This study examined the predictive power of students' demographic characteristics, reading attitudes, school characteristics, and teacher-informed reading activities on three metacognitive reading skills: understanding and remembering, summarizing, and assessing credibility and their influence on 15-year-old students' reading scores. The dataset…
Descriptors: Foreign Countries, Achievement Tests, International Assessment, Secondary School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Johnson, Jillian C.; Olney, Andrew M. – International Educational Data Mining Society, 2022
Typical data science instruction uses generic datasets like survival rates on the Titanic, which may not be motivating for students. Will introducing real-life data science problems fill this motivational deficit? To analyze this question, we contrasted learning with generic datasets and artificial problems (Phase 1) with a community-sourced…
Descriptors: Data, Data Analysis, Interdisciplinary Approach, Student Motivation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Prihar, Ethan; Vanacore, Kirk; Sales, Adam; Heffernan, Neil – International Educational Data Mining Society, 2023
There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in…
Descriptors: Electronic Learning, Intervention, Instructional Effectiveness, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – International Educational Data Mining Society, 2022
Despite calls to increase the focus on explainability and interpretability in EDM and, in particular, student success prediction, so that it becomes useful for personalized intervention systems, only few efforts have been undertaken in that direction so far. In this paper, we argue that this is mainly due to the limitations of current Explainable…
Descriptors: Success, Prediction, Social Sciences, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Tianying; Chung, Gregory K. W. K. – Grantee Submission, 2022
A critical issue in using fine-grained gameplay data to measure learning processes is the development of indicators and the algorithms used to derive such indicators. Successful development--that is, developing traceable, interpretable, and sensitive-to-learning indicators--requires understanding the underlying theory, how the theory is…
Descriptors: Games, Data Collection, Learning Processes, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew Pendola; David T. Marshall; Tim Pressley; Deja' Lynn Trammell – AERA Online Paper Repository, 2024
This project aims to gain insight into the mechanisms by which schools in highly challenging environments avoided learning loss--or even improved--during the pandemic. Using a unique dataset covering multiple levels of school, health, and environmental data, we examine which factors led schools to 'beat the odds' when it comes to learning…
Descriptors: COVID-19, Pandemics, Educational Practices, Economically Disadvantaged
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7