NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Research22
Journal Articles21
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Theresa Büchter; Andreas Eichler; Katharina Böcherer-Linder; Markus Vogel; Karin Binder; Stefan Krauss; Nicole Steib – Educational Studies in Mathematics, 2024
Previous studies on Bayesian situations, in which probabilistic information is used to update the probability of a hypothesis, have often focused on the calculation of a posterior probability. We argue that for an in-depth understanding of Bayesian situations, it is (apart from mere calculation) also necessary to be able to evaluate the effect of…
Descriptors: Bayesian Statistics, Logical Thinking, Elementary School Teachers, Secondary School Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Binder, Karin; Krauss, Stefan; Schmidmaier, Ralf; Braun, Leah T. – Advances in Health Sciences Education, 2021
When physicians are asked to determine the positive predictive value from the a priori probability of a disease and the sensitivity and false positive rate of a medical test (Bayesian reasoning), it often comes to misjudgments with serious consequences. In daily clinical practice, however, it is not only important that doctors receive a tool with…
Descriptors: Clinical Diagnosis, Efficiency, Probability, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Lozano, José H.; Revuelta, Javier – Educational and Psychological Measurement, 2023
The present paper introduces a general multidimensional model to measure individual differences in learning within a single administration of a test. Learning is assumed to result from practicing the operations involved in solving the items. The model accounts for the possibility that the ability to learn may manifest differently for correct and…
Descriptors: Bayesian Statistics, Learning Processes, Test Items, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mayrhofer, Ralf; Waldmann, Michael R. – Cognitive Science, 2016
Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…
Descriptors: Causal Models, Bayesian Statistics, Inferences, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Dawn; Lu, Hongjing; Holyoak, Keith J. – Cognitive Science, 2017
A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…
Descriptors: Inferences, Abstract Reasoning, Learning Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rehder, Bob – Cognitive Science, 2017
This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…
Descriptors: Abstract Reasoning, Logical Thinking, Causal Models, Graphs
Jing Lu; Chun Wang; Ningzhong Shi – Grantee Submission, 2023
In high-stakes, large-scale, standardized tests with certain time limits, examinees are likely to engage in either one of the three types of behavior (e.g., van der Linden & Guo, 2008; Wang & Xu, 2015): solution behavior, rapid guessing behavior, and cheating behavior. Oftentimes examinees do not always solve all items due to various…
Descriptors: High Stakes Tests, Standardized Tests, Guessing (Tests), Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Hardman, Kyle O.; Cowan, Nelson – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had…
Descriptors: Logical Thinking, Short Term Memory, Models, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Trippas, Dries; Handley, Simon J.; Verde, Michael F.; Morsanyi, Kinga – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
A key assumption of dual process theory is that reasoning is an explicit, effortful, deliberative process. The present study offers evidence for an implicit, possibly intuitive component of reasoning. Participants were shown sentences embedded in logically valid or invalid arguments. Participants were not asked to reason but instead rated the…
Descriptors: Evidence, Logical Thinking, Validity, Sentences
Peer reviewed Peer reviewed
Direct linkDirect link
Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
One of the major debates concerning the nature of inferential reasoning is between counterexample-based theories such as mental model theory and probabilistic theories. This study looks at conclusion updating after the addition of statistical information to examine the hypothesis that deductive reasoning cannot be explained by probabilistic…
Descriptors: Logical Thinking, Theories, Bayesian Statistics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Endress, Ansgar D. – Cognition, 2013
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…
Descriptors: Learning, Bayesian Statistics, Logical Thinking, Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Hall, Stacey; Phang, Sen Han; Schaefer, Jeffrey P.; Ghali, William; Wright, Bruce; McLaughlin, Kevin – Advances in Health Sciences Education, 2014
Although the process of diagnosing invariably begins with a heuristic, we encourage our learners to support their diagnoses by analytical cognitive processes, such as Bayesian reasoning, in an attempt to mitigate the effects of heuristics on diagnosing. There are, however, limited data on the use ± impact of Bayesian reasoning on the accuracy of…
Descriptors: Computation, Probability, Pretests Posttests, Heuristics
Previous Page | Next Page »
Pages: 1  |  2