NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Research52
Journal Articles29
Speeches/Meeting Papers19
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Conrad Borchers; Jeroen Ooge; Cindy Peng; Vincent Aleven – Grantee Submission, 2025
Personalized problem selection enhances student practice in tutoring systems. Prior research has focused on transparent problem selection that supports learner control but rarely engages learners in selecting practice materials. We explored how different levels of control (i.e., full AI control, shared control, and full learner control), combined…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Learner Controlled Instruction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Luiz Rodrigues; Guilherme Guerino; Thomaz E. V. Silva; Geiser C. Challco; Lívia Oliveira; Rodolfo S. da Penha; Rafael F. Melo; Thales Vieira; Marcelo Marinho; Valmir Macario; Ig I. Bittencourt; Diego Dermeval; Seiji Isotani – International Journal of Artificial Intelligence in Education, 2025
Intelligent Tutoring Systems (ITS) possess significant potential to enhance learning outcomes. However, deploying ITSs in global south countries presents challenges due to their frequent lack of essential technological resources, such as computers and internet access. The concept of AIED Unplugged has emerged to bridge this digital divide,…
Descriptors: Teacher Attitudes, Intelligent Tutoring Systems, Numeracy, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Nesra Yannier; Scott E. Hudson; Henry Chang; Kenneth R. Koedinger – International Journal of Artificial Intelligence in Education, 2024
Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a…
Descriptors: Artificial Intelligence, Computer Software, Feedback (Response), Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Xieling; Zou, Di; Xie, Haoran; Chen, Guanliang; Lin, Jionghao; Cheng, Gary – Education and Information Technologies, 2023
The diversity and advance of information, communication, and analytical technologies and their increasing adoption to assist instruction and learning give rise to various technology-driven conferences (e.g., artificial intelligence in education) in educational technology. Previous reviews on educational technology commonly focused on journal…
Descriptors: Educational Technology, Conference Papers, Bibliometrics, Conferences (Gatherings)
Peer reviewed Peer reviewed
Devika Venugopalan; Ziwen Yan; Conrad Borchers; Jionghao Lin; Vincent Aleven – Grantee Submission, 2025
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning…
Descriptors: Homework, Computational Linguistics, Teaching Methods, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Sahin, Muhittin; Ulucan, Aydin; Yurdugül, Halil – Education and Information Technologies, 2021
E-learning environments can store huge amounts of data on the interaction of learners with the content, assessment and discussion. Yet, after the identification of meaningful patterns or learning behaviour in the data, it is necessary to use these patterns to improve learning environments. It is notable that designs to benefit from these patterns…
Descriptors: Electronic Learning, Data Collection, Decision Making, Evaluation Criteria
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Efremov, Aleksandr; Ghosh, Ahana; Singla, Adish – International Educational Data Mining Society, 2020
Intelligent tutoring systems for programming education can support students by providing personalized feedback when a student is stuck in a coding task. We study the problem of designing a hint policy to provide a next-step hint to students from their current partial solution, e.g., which line of code should be edited next. The state of the art…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Computer Science Education, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Cody, Christa; Maniktala, Mehak; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2022
Research has shown assistance can provide many benefits to novices lacking the mental models needed for problem solving in a new domain. However, varying approaches to assistance, such as subgoals and next-step hints, have been implemented with mixed results. Next-Step hints are common in data-driven tutors due to their straightforward generation…
Descriptors: Comparative Analysis, Prior Learning, Intelligent Tutoring Systems, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – Journal of Educational Data Mining, 2022
Instant feedback plays a vital role in promoting academic achievement and student success. In practice, however, delivering timely feedback to students can be challenging for instructors for a variety of reasons (e.g., limited teaching resources). In many cases, feedback arrives too late for learners to act on the advice and reinforce their…
Descriptors: Student Projects, Learning Analytics, Intelligent Tutoring Systems, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Mingyu Feng; Natalie Brezack; Chunwei Huang; Melissa Lee; Megan Schneider; Kelly Collins; Wynnie Chan – Society for Research on Educational Effectiveness, 2024
Background/Context: Math education remains a critical focus for national education improvement. As a solution, districts in the U.S. are investing in math education technologies. Research has demonstrated the potential of these technologies to close achievement gaps (e.g., Pape et al., 2012; Roschelle et al., 2016). Student math achievement is…
Descriptors: Mathematics Education, Problem Solving, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wiedbusch, Megan; Lester, James; Azevedo, Roger – Metacognition and Learning, 2023
Pedagogical agents have been designed to support the significant challenges that learners face when self-regulating in advanced learning environments. Evidence suggests differences in learners' prior skills and abilities, in conjunction with excessive didactic support, can cause overreliance on these external aids, which in turn prevents deeper…
Descriptors: Measurement Techniques, Metacognition, Learning Processes, Nonverbal Communication
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4