NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kasepalu, Reet; Chejara, Pankaj; Prieto, Luis P.; Ley, Tobias – Technology, Knowledge and Learning, 2022
Monitoring and guiding multiple groups of students in face-to-face collaborative work is a demanding task which could possibly be alleviated with the use of a technological assistant in the form of learning analytics. However, it is still unclear whether teachers would indeed trust, understand, and use such analytics in their classroom practice…
Descriptors: Teacher Attitudes, Secondary School Teachers, Technology Uses in Education, Online Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Qun; Wang, Jin-Long; Pao, Tsang-Long; Wang, Li-Yu – Journal of Educational Technology Systems, 2020
This study uses the log data from Moodle learning management system for predicting student learning performance in the first third of a semester. Since the quality of the data has great influence on the accuracy of machine learning, five major data transmission methods are used to enhance data quality of log file in the data preprocessing stage.…
Descriptors: Classification, Learning, Accuracy, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiang, Weijie; Pardos, Zachary A. – International Educational Data Mining Society, 2020
Data mining of course enrollment and course description records has soared as institutions of higher education begin tapping into the value of these data for academic and internal research purposes. This has led to a more than doubling of papers on course prediction tasks every year. The papers often center around a single prediction task and…
Descriptors: Course Descriptions, Models, Prediction, Course Selection (Students)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ninasivincha-Apfata, Jhon Edwar; Quispe-Figueroa, Ricardo Carlos; Valderrama-Solis, Manuel Alejandro; Maraza-Quispe, Benjamin – World Journal on Educational Technology: Current Issues, 2021
The objective of the research is to develop a methodology to analyse a set of data extracted from a learning management system, in order to implement a dashboard, which can be used by teachers to make timely and relevant decisions to improve the teaching-learning processes. The methodology used consisted of analysing 9,257 records extracted…
Descriptors: Learning Analytics, Integrated Learning Systems, Visual Aids, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Mozahem, Najib Ali – International Journal of Mobile and Blended Learning, 2020
Higher education institutes are increasingly turning their attention to web-based learning management systems. The purpose of this study is to investigate whether data collected from LMS can be used to predict student performance in classrooms that use LMS to supplement face-to-face teaching. Data was collected from eight courses spread across two…
Descriptors: Integrated Learning Systems, Data Use, Prediction, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Baneres, David; Rodriguez-Gonzalez, M. Elena; Serra, Montse – IEEE Transactions on Learning Technologies, 2019
Identifying at-risk students as soon as possible is a challenge in educational institutions. Decreasing the time lag between identification and real at-risk state may significantly reduce the risk of failure or disengage. In small courses, their identification is relatively easy, but it is impractical on larger ones. Current Learning Management…
Descriptors: Prediction, Feedback (Response), At Risk Students, College Freshmen
Miller, Cynthia; Cohen, Benjamin; Yang, Edith; Pellegrino, Lauren – MDRC, 2020
College students have a better chance of succeeding in school when they receive high-quality advising. High-quality advising, when characterized by frequent communications between advisers and students, early outreach to students showing signs of academic or nonacademic struggles, and personalized guidance that addresses individual student needs,…
Descriptors: College Students, Academic Advising, Technology Uses in Education, Faculty Advisers