NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Research16
Journal Articles13
Speeches/Meeting Papers3
Information Analyses1
Audience
Laws, Policies, & Programs
Assessments and Surveys
SAT (College Admission Test)1
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
de Andrade, Tiago Luís; Rigo, Sandro José; Barbosa, Jorge Luis Victória – Informatics in Education, 2021
Distance Learning has enabled educational practices based on digital platforms, generating massive amounts of data. Several initiatives use this data to identify dropout contexts, mainly providing teacher support about student behavior. Approaches such as Active Methodologies are known as having good potential to involve and motivate students.…
Descriptors: Learning Analytics, Distance Education, Dropout Prevention, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Munguia, Pablo; Brennan, Amelia – Journal of Learning Analytics, 2020
No course exists in isolation, so examining student progression through courses within a broader program context is an important step in integrating course-level and program-level analytics. Integration in this manner allows us to see the impact of course-level changes to the program, as well as identify points in the program structure where…
Descriptors: Learning Analytics, Courses, College Programs, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Canto, Natalia Gil; de Oliveira, Marcelo Albuquerque; Veroneze, Gabriela de Mattos – European Journal of Educational Research, 2022
The article aims to develop a machine-learning algorithm that can predict student's graduation in the Industrial Engineering course at the Federal University of Amazonas based on their performance data. The methodology makes use of an information package of 364 students with an admission period between 2007 and 2019, considering characteristics…
Descriptors: Engineering Education, Prediction, Graduation, Industrial Arts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zualkernan, Imran – International Association for Development of the Information Society, 2021
A significant amount of research has gone into predicting student performance and many studies have been conducted to predict why students drop out. A variety of data including digital footprints, socio-economic data, financial data, and psychological aspects have been used to predict student performance at the test, course, or program level.…
Descriptors: Prediction, Engineering Education, Academic Achievement, Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Barragán, Sandra; González, Leandro; Calderón, Gloria – Interchange: A Quarterly Review of Education, 2022
A combination of mathematical and statistical modelling techniques may be used to analyse student dropout behaviour. The aim of this study is to combine Survival Analysis and Analytic Hierarchy Process methodologies when identifying students at-risk of dropping out. This combination favours the institutional understanding of dropout as a dynamic…
Descriptors: Undergraduate Students, Gender Differences, Age Differences, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Cardona, Tatiana; Cudney, Elizabeth A.; Hoerl, Roger; Snyder, Jennifer – Journal of College Student Retention: Research, Theory & Practice, 2023
This study presents a systematic review of the literature on the predicting student retention in higher education through machine learning algorithms based on measures such as dropout risk, attrition risk, and completion risk. A systematic review methodology was employed comprised of review protocol, requirements for study selection, and analysis…
Descriptors: Learning Analytics, Data Analysis, Prediction, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Shivangi; Sabitha, A. Sai – Education and Information Technologies, 2019
Aimed at a massive outreach and open access education, Massive Open Online Courses (MOOC) has evolved incredibly engaging millions of learners' over the years. These courses provide an opportunity for learning analytics with respect to the diversity in learning activity. Inspite of its growth, high dropout rate of the learners', it is examined to…
Descriptors: Retention (Psychology), Online Courses, Learner Engagement, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Chen; Sonnert, Gerhard; Sadler, Philip M.; Sasselov, Dimitar D.; Fredericks, Colin; Malan, David J. – Distance Education, 2020
Participants' engagement in massive online open courses (MOOCs) is highly irregular and self-directed. It is well known in the field of television media that substantial parts of the audience tend to drop out at major episodic, or seasonal, closures, which makes creating cliff-hangers a crucial strategy to retain viewers (Bakker, 1993; Cazani,…
Descriptors: Online Courses, Dropouts, Learning Analytics, Dropout Rate
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Yang, Yuming; Baker, Ryan S.; Brooks, Christopher – International Educational Data Mining Society, 2019
Replication of machine learning experiments can be a useful tool to evaluate how both "modeling" and "experimental design" contribute to experimental results; however, existing replication efforts focus almost entirely on modeling alone. In this work, we conduct a three-part replication case study of a state-of-the-art LSTM…
Descriptors: Online Courses, Large Group Instruction, Prediction, Models
Previous Page | Next Page »
Pages: 1  |  2