Publication Date
| In 2026 | 0 |
| Since 2025 | 7 |
| Since 2022 (last 5 years) | 40 |
| Since 2017 (last 10 years) | 112 |
| Since 2007 (last 20 years) | 240 |
Descriptor
| Data Analysis | 301 |
| Classification | 300 |
| Foreign Countries | 82 |
| Models | 56 |
| Data Collection | 41 |
| Prediction | 37 |
| Statistical Analysis | 37 |
| Research Methodology | 32 |
| College Students | 31 |
| Teaching Methods | 31 |
| Comparative Analysis | 30 |
| More ▼ | |
Source
Author
| Barnes, Tiffany | 3 |
| Siekmann, Gitta | 3 |
| Aksu, Gökhan | 2 |
| Blanchard, Simon J. | 2 |
| Chao, Jie | 2 |
| Chi, Min | 2 |
| Cohen, Anat | 2 |
| DeSarbo, Wayne S. | 2 |
| Haskell, Todd R. | 2 |
| Hubert, Lawrence | 2 |
| Kandace Fleming | 2 |
| More ▼ | |
Publication Type
Education Level
Location
| Turkey | 16 |
| Australia | 8 |
| United Kingdom | 8 |
| United States | 7 |
| Brazil | 4 |
| Canada | 4 |
| India | 4 |
| New Zealand | 4 |
| Europe | 3 |
| Germany | 3 |
| Singapore | 3 |
| More ▼ | |
Laws, Policies, & Programs
| Higher Education Act 1965 | 1 |
| Higher Education Act Title III | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Wan-Chong Choi; Chan-Tong Lam; António José Mendes – International Educational Data Mining Society, 2025
Missing data presents a significant challenge in Educational Data Mining (EDM). Imputation techniques aim to reconstruct missing data while preserving critical information in datasets for more accurate analysis. Although imputation techniques have gained attention in various fields in recent years, their use for addressing missing data in…
Descriptors: Research Problems, Data Analysis, Research Methodology, Models
Yongseok Lee; Walter L. Leite; Audrey J. Leroux – Journal of Experimental Education, 2024
In the current study, we compare propensity score (PS) matching methods for data with a cross-classified structure, where each individual is clustered within more than one group, but the groups are not hierarchically organized. Through a Monte Carlo simulation study, we compared sequential cluster matching (SCM), preferential within cluster…
Descriptors: Comparative Analysis, Data Analysis, Groups, Classification
Su, Hsu-Lin; Chen, Po-Hsi – Educational and Psychological Measurement, 2023
The multidimensional mixture data structure exists in many test (or inventory) conditions. Heterogeneity also relatively exists in populations. Still, some researchers are interested in deciding to which subpopulation a participant belongs according to the participant's factor pattern. Thus, in this study, we proposed three analysis procedures…
Descriptors: Data Analysis, Correlation, Classification, Factor Structure
Vahid Roshanaei; Bahman Naderi; Opher Baron; Dmitry Krass – INFORMS Transactions on Education, 2024
We present an interactive spreadsheet that supports teaching essential concepts in classification using the logistic regression (LoR) model for binary classification. The interactive spreadsheet demonstrates the capabilities of LoR by integrating computation with visualization. Students will reinforce concepts like probabilities, maximum…
Descriptors: Spreadsheets, Interaction, Classification, Computation
Kim, Nayoung; Oh, JungSu – Measurement and Evaluation in Counseling and Development, 2023
We investigated the effect of careless or insufficient effort (C/IE) responses in a study using Amazon's Mechanical Turk. A factor mixture model was used to identify latent classes based on the pattern of responses with biases and examine the effect of C/IE responses on the fit of the theoretical model.
Descriptors: Counseling, Research, Responses, College Students
Frydenlund, Jonas Højgaard – Scandinavian Journal of Educational Research, 2023
In this ethnographic study, I present a single school's practice of registering and analysing absence from school. I show that teachers use various "dirty," interpretational contexts for understanding absence and make it classifiable in "clean" attendance categories -- a move that decontextualises the meaning of absence. When…
Descriptors: Ethnography, Attendance, Truancy, Classification
Anna Khalemsky; Roy Gelbard; Yelena Stukalin – Journal of Statistics and Data Science Education, 2025
Classification, a fundamental data analytics task, has widespread applications across various academic disciplines, such as marketing, finance, sociology, psychology, education, and public health. Its versatility enables researchers to explore diverse research questions and extract valuable insights from data. Therefore, it is crucial to extend…
Descriptors: Classification, Undergraduate Students, Undergraduate Study, Data Science
Salomé Do; Étienne Ollion; Rubing Shen – Sociological Methods & Research, 2024
The last decade witnessed a spectacular rise in the volume of available textual data. With this new abundance came the question of how to analyze it. In the social sciences, scholars mostly resorted to two well-established approaches, human annotation on sampled data on the one hand (either performed by the researcher, or outsourced to…
Descriptors: Computation, Social Sciences, Natural Language Processing, Artificial Intelligence
Higgins, Traci; Mokros, Jan; Rubin, Andee; Sagrans, Jacob – Teaching Statistics: An International Journal for Teachers, 2023
In the context of an afterschool program in which students explore relatively large authentic datasets, we investigated how 11- to 14-year old students worked with categorical variables. During the program, students learned to use the Common Online Data Analysis Platform (CODAP), a statistical analysis platform specifically designed for middle and…
Descriptors: Classification, After School Programs, Data Analysis, Middle School Students
Kathleen Lynne Lane; Katie Scarlett Lane Pelton; Nathan Allen Lane; Mark Matthew Buckman; Wendy Peia Oakes; Kandace Fleming; Rebecca E. Swinburne Romine; Emily D. Cantwell – Behavioral Disorders, 2025
We report findings of this replication study, examining the internalizing subscale (SRSS-I4) of the revised version of the Student Risk Screening Scale for Internalizing and Externalizing behavior (SRSS-IE 9) and the internalizing subscale of the Teacher Report Form (TRF). Using the sample from 13 elementary schools across three U.S. states with…
Descriptors: Data Analysis, Decision Making, Data Use, Measures (Individuals)
Stephanie Fuchs; Alexandra Werth; Cristóbal Méndez; Jonathan Butcher – Journal of Engineering Education, 2025
Background: High-quality feedback is crucial for academic success, driving student motivation and engagement while research explores effective delivery and student interactions. Advances in artificial intelligence (AI), particularly natural language processing (NLP), offer innovative methods for analyzing complex qualitative data such as feedback…
Descriptors: Artificial Intelligence, Training, Data Analysis, Natural Language Processing
Mohanad Halaweh – Journal of Information Systems Education, 2025
Artificial intelligence (AI) and its subfield, machine learning, have become indispensable across various industries. With the aid of low-code/no-code development platform like KNIME, understanding and applying machine learning algorithms has been simplified for various fields, including business and information systems, as these platforms reduce…
Descriptors: Artificial Intelligence, Computer Uses in Education, Business Education, Information Systems
Luna, J. M.; Fardoun, H. M.; Padillo, F.; Romero, C.; Ventura, S. – Interactive Learning Environments, 2022
The aim of this paper is to categorize and describe different types of learners in massive open online courses (MOOCs) by means of a subgroup discovery (SD) approach based on MapReduce. The proposed SD approach, which is an extension of the well-known FP-Growth algorithm, considers emerging parallel methodologies like MapReduce to be able to cope…
Descriptors: Online Courses, Student Characteristics, Classification, Student Behavior
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Cross-Classified Item Response Theory Modeling with an Application to Student Evaluation of Teaching
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory

Peer reviewed
Direct link
