NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 364 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amanda A. Wolkowitz; Russell Smith – Practical Assessment, Research & Evaluation, 2024
A decision consistency (DC) index is an estimate of the consistency of a classification decision on an exam. More specifically, DC estimates the percentage of examinees that would have the same classification decision on an exam if they were to retake the same or a parallel form of the exam again without memory of taking the exam the first time.…
Descriptors: Testing, Test Reliability, Replication (Evaluation), Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
V. N. Vimal Rao; Jeffrey K. Bye; Sashank Varma – Cognitive Research: Principles and Implications, 2024
The 0.05 boundary within Null Hypothesis Statistical Testing (NHST) "has made a lot of people very angry and been widely regarded as a bad move" (to quote Douglas Adams). Here, we move past meta-scientific arguments and ask an empirical question: What is the psychological standing of the 0.05 boundary for statistical significance? We…
Descriptors: Psychological Patterns, Statistical Analysis, Testing, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Yewon; Ha, Hyorim; Lee, Hee Seung – Educational Psychology Review, 2023
Natural category learning is important in science education. One strategy that has been empirically supported for enhancing category learning is testing, which facilitates not only the learning of previously studied information (backward testing effect) but also the learning of newly studied information (forward testing effect). However, in…
Descriptors: Science Education, Science Tests, Testing, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Kayla V. Campaña; Benjamin G. Solomon – Assessment for Effective Intervention, 2025
The purpose of this study was to compare the classification accuracy of data produced by the previous year's end-of-year New York state assessment, a computer-adaptive diagnostic assessment ("i-Ready"), and the gating combination of both assessments to predict the rate of students passing the following year's end-of-year state assessment…
Descriptors: Accuracy, Classification, Diagnostic Tests, Adaptive Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Baldwin; Victoria Yaneva; Kai North; Le An Ha; Yiyun Zhou; Alex J. Mechaber; Brian E. Clauser – Journal of Educational Measurement, 2025
Recent developments in the use of large-language models have led to substantial improvements in the accuracy of content-based automated scoring of free-text responses. The reported accuracy levels suggest that automated systems could have widespread applicability in assessment. However, before they are used in operational testing, other aspects of…
Descriptors: Artificial Intelligence, Scoring, Computational Linguistics, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Seohee; Kim, Kyung Yong; Lee, Won-Chan – Journal of Educational Measurement, 2023
Multiple measures, such as multiple content domains or multiple types of performance, are used in various testing programs to classify examinees for screening or selection. Despite the popular usages of multiple measures, there is little research on classification consistency and accuracy of multiple measures. Accordingly, this study introduces an…
Descriptors: Testing, Computation, Classification, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Lim, Hwanggyu; Davey, Tim; Wells, Craig S. – Journal of Educational Measurement, 2021
This study proposed a recursion-based analytical approach to assess measurement precision of ability estimation and classification accuracy in multistage adaptive tests (MSTs). A simulation study was conducted to compare the proposed recursion-based analytical method with an analytical method proposed by Park, Kim, Chung, and Dodd and with the…
Descriptors: Adaptive Testing, Measurement, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Corral; Shana K. Carpenter – Cognitive Research: Principles and Implications, 2024
We report six experiments that examine how two essential components of a category-learning paradigm, training and feedback, can be manipulated to maximize learning and transfer of real-world, complex concepts. Some subjects learned through classification and were asked to classify hypothetical experiment scenarios as either true or non-true…
Descriptors: Concept Formation, Teaching Methods, Observational Learning, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Du; Susu Zhang – Journal of Educational and Behavioral Statistics, 2025
Item compromise has long posed challenges in educational measurement, jeopardizing both test validity and test security of continuous tests. Detecting compromised items is therefore crucial to address this concern. The present literature on compromised item detection reveals two notable gaps: First, the majority of existing methods are based upon…
Descriptors: Item Response Theory, Item Analysis, Bayesian Statistics, Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Nathaniel von der Embse – Journal of Experimental Education, 2024
Using data from multiple informants has long been considered best practice in education. However, multiple informants often disagree on similar constructs, complicating decision-making. Polynomial regression and response-surface analysis (PRA) is often used to test the congruence effect between multiple informants on an outcome. However, PRA…
Descriptors: Congruence (Psychology), Information Sources, Best Practices, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Demir, Seda – Journal of Educational Technology and Online Learning, 2022
The purpose of this research was to evaluate the effect of item pool and selection algorithms on computerized classification testing (CCT) performance in terms of some classification evaluation metrics. For this purpose, 1000 examinees' response patterns using the R package were generated and eight item pools with 150, 300, 450, and 600 items…
Descriptors: Test Items, Item Banks, Mathematics, Computer Assisted Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mousavi, Amin; Cui, Ying – Education Sciences, 2020
Often, important decisions regarding accountability and placement of students in performance categories are made on the basis of test scores generated from tests, therefore, it is important to evaluate the validity of the inferences derived from test results. One of the threats to the validity of such inferences is aberrant responding. Several…
Descriptors: Student Evaluation, Educational Testing, Psychological Testing, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
W. Jake Thompson – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that can be used to estimate the presence or absence of psychological traits, or proficiency on fine-grained skills. Critical to the use of any psychometric model in practice, including DCMs, is an evaluation of model fit. Traditionally, DCMs have been estimated with maximum…
Descriptors: Bayesian Statistics, Classification, Psychometrics, Goodness of Fit
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  25