Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 51 |
| Since 2017 (last 10 years) | 54 |
| Since 2007 (last 20 years) | 54 |
Descriptor
| Algorithms | 72 |
| Classification | 72 |
| Artificial Intelligence | 32 |
| Prediction | 20 |
| Accuracy | 15 |
| Learning Analytics | 15 |
| Models | 15 |
| Information Retrieval | 13 |
| Electronic Learning | 10 |
| Foreign Countries | 10 |
| Bayesian Statistics | 9 |
| More ▼ | |
Source
Author
| Sangjin Kim | 2 |
| Sijia Huang | 2 |
| White, Lee J. | 2 |
| A. I. Makinde | 1 |
| Abdullahi Yusuf | 1 |
| Adam Fleischhacker | 1 |
| Aissaoui, Karima | 1 |
| Alanah Grant St. James | 1 |
| Alexander von Eye | 1 |
| Amane, Meryem | 1 |
| Amy Carroll-Scott | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 72 |
| Journal Articles | 61 |
| Speeches/Meeting Papers | 4 |
| Opinion Papers | 2 |
| Guides - Non-Classroom | 1 |
| Information Analyses | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 19 |
| Postsecondary Education | 19 |
| Elementary Education | 6 |
| Secondary Education | 4 |
| Middle Schools | 3 |
| Early Childhood Education | 2 |
| Junior High Schools | 2 |
| Primary Education | 2 |
| Grade 2 | 1 |
| Grade 3 | 1 |
| Grade 6 | 1 |
| More ▼ | |
Audience
| Researchers | 6 |
Location
| Massachusetts (Boston) | 2 |
| South Korea | 2 |
| Turkey | 2 |
| China | 1 |
| Delaware | 1 |
| Estonia | 1 |
| Ghana | 1 |
| Indiana | 1 |
| Pennsylvania (Philadelphia) | 1 |
| Turkey (Istanbul) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 2 |
| National Assessment of… | 1 |
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Meng Cao; Philip I. Pavlik Jr.; Wei Chu; Liang Zhang – International Educational Data Mining Society, 2024
In category learning, a growing body of literature has increasingly focused on exploring the impacts of interleaving in contrast to blocking. The sequential attention hypothesis posits that interleaving draws attention to the differences between categories while blocking directs attention toward similarities within categories [4, 5]. Although a…
Descriptors: Attention, Algorithms, Artificial Intelligence, Classification
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Muhammad Kamal Hossen; Mohammad Shorif Uddin – Education and Information Technologies, 2025
Online learning continues to expand due to globalization and the COVID-19 pandemic. However, maintaining student engagement in this new normal has become increasingly difficult. Conventional techniques, such as self-reports and manual observations, often fall short of capturing the subtle behaviors that indicate attentiveness. This emphasizes the…
Descriptors: Learner Engagement, Online Courses, Artificial Intelligence, Technology Uses in Education
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Amane, Meryem; Aissaoui, Karima; Berrada, Mohammed – International Journal of Information and Learning Technology, 2023
Purpose: Together, learning objects (LOs) and e-pedagogical practices have the potential to improve the performance of e-learning systems in several ways. They can make e-learning more personalised and adaptable, providing students with a more engaging and effective learning experience. Design/methodology/approach: The development of LOs and…
Descriptors: Electronic Learning, Resource Units, Metadata, Algorithms
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Eeshan Hasan; Erik Duhaime; Jennifer S. Trueblood – Cognitive Research: Principles and Implications, 2024
A crucial bottleneck in medical artificial intelligence (AI) is high-quality labeled medical datasets. In this paper, we test a large variety of wisdom of the crowd algorithms to label medical images that were initially classified by individuals recruited through an app-based platform. Individuals classified skin lesions from the International…
Descriptors: Algorithms, Human Body, Classification, Knowledge Level
Quan, Zhi; Pu, Luoxi – Education and Information Technologies, 2023
In the face of surging online education around the globe, it seems quite necessary and helpful for learners and teachers to have the plethora of online resources well sorted out beforehand. To some extent, the efficiency and accuracy of resource search and retrieval may determine the quality and influence of online education. In this research,…
Descriptors: Accuracy, Classification, Internet, Open Educational Resources
Carina Büscher – International Journal of Science and Mathematics Education, 2025
Computational thinking (CT) is becoming increasingly important as a learning content. Subject-integrated approaches aim to develop CT within other subjects like mathematics. The question is how exactly CT can be integrated and learned in mathematics classrooms. In a case study involving 12 sixth-grade learners, CT activities were explored that…
Descriptors: Mathematics Instruction, Thinking Skills, Teaching Methods, Computer Science Education
Karatas, Kasim; Arpaci, Ibrahim; Yildirim, Yusuf – Education and Urban Society, 2023
This study aimed to predict the culturally responsive teacher roles based on cultural intelligence and self-efficacy using machine learning classification algorithms. The research group consists of 415 teachers from different branches. The Bayes classifier (NaiveBayes), logistic-regression (SMO), lazy-classifier (KStar), meta-classifier…
Descriptors: Prediction, Culturally Relevant Education, Teacher Role, Cultural Awareness
Carvalho, Floran; Henriet, Julien; Greffier, Francoise; Betbeder, Marie-Laure; Leon-Henri, Dana – Journal of Education and e-Learning Research, 2023
This research is part of the Artificial Intelligence Virtual Trainer (AI-VT) project which aims to create a system that can identify the user's skills from a text by means of machine learning. AI-VT is a case-based reasoning learning support system can generate customized exercise lists that are specially adapted to user needs. To attain this…
Descriptors: Learning Processes, Algorithms, Artificial Intelligence, Programming Languages
Alanah Grant St. James; Luke Hand; Thomas Mills; Liwen Song; Annabel S. J. Brunt; Patrick E. Bergstrom Mann; Andrew F. Worrall; Malcolm I. Stewart; Claire Vallance – Journal of Chemical Education, 2023
Applications of machine learning in chemistry are many and varied, from prediction of structure-property relationships, to modeling of potential energy surfaces for large scale atomistic simulations. We describe a generalized approach for the application of machine learning to the classification of spectra which can be used as the basis for a wide…
Descriptors: Artificial Intelligence, Chemistry, Science Instruction, Classification
Anagha Vaidya; Sarika Sharma – Interactive Technology and Smart Education, 2024
Purpose: Course evaluations are formative and are used to evaluate learnings of the students for a course. Anomalies in the evaluation process can lead to a faulty educational outcome. Learning analytics and educational data mining provide a set of techniques that can be conveniently applied to extensive data collected as part of the evaluation…
Descriptors: Course Evaluation, Learning Analytics, Formative Evaluation, Information Retrieval
O. S. Adewale; O. C. Agbonifo; E. O. Ibam; A. I. Makinde; O. K. Boyinbode; B. A. Ojokoh; O. Olabode; M. S. Omirin; S. O. Olatunji – Interactive Learning Environments, 2024
With the advent of technological advancement in learning, such as context-awareness, ubiquity and personalisation, various innovations in teaching and learning have led to improved learning. This research paper aims to develop a system that supports personalised learning through adaptive content, adaptive learning path and context awareness to…
Descriptors: Cognitive Style, Individualized Instruction, Learning Processes, Preferences

Peer reviewed
Direct link
