NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Guojing; Azizsoltani, Hamoon; Ausin, Markel Sanz; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2022
In interactive e-learning environments such as Intelligent Tutoring Systems, pedagogical decisions can be made at different levels of granularity. In this work, we focus on making decisions at "two levels": whole problems vs. single steps and explore three types of granularity: "problem-level only" ("Prob-Only"),…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Decision Making, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Lodder, Josje; Heeren, Bastiaan; Jeuring, Johan; Neijenhuis, Wendy – International Journal of Artificial Intelligence in Education, 2021
This paper describes LOGAX, an interactive tutoring tool that gives hints and feedback to a student who stepwise constructs a Hilbert-style axiomatic proof in propositional logic. LOGAX generates proofs to calculate hints and feedback. We compare these generated proofs with expert proofs and student solutions, and conclude that the quality of the…
Descriptors: Intelligent Tutoring Systems, Cues, Feedback (Response), Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Huaiya Liu; Yuyue Zhang; Jiyou Jia – IEEE Transactions on Learning Technologies, 2024
Intelligent tutoring systems (ITSs) aim to deliver personalized learning support to each learner, aligning with the educational aspiration of many countries, including China. ITSs' personalized support is mainly achieved by providing individual prompts to learners when they encounter difficulties in problem-solving. The guiding principles and…
Descriptors: Intelligent Tutoring Systems, Mathematics Achievement, Individualized Instruction, Foreign Countries
Vincent Aleven; Jori Blankestijn; LuEttaMae Lawrence; Tomohiro Nagashima; Niels Taatgen – Grantee Submission, 2022
Past research has yielded ample knowledge regarding the design of analytics-based tools for teachers and has found beneficial effects of several tools on teaching and learning. Yet there is relatively little knowledge regarding the design of tools that support teachers when a class of students uses AI-based tutoring software for self-paced…
Descriptors: Educational Technology, Artificial Intelligence, Problem Solving, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Katz, Sandra; Albacete, Patricia; Chounta, Irene-Angelica; Jordan, Pamela; McLaren, Bruce M.; Zapata-Rivera, Diego – International Journal of Artificial Intelligence in Education, 2021
Jim Greer and his colleagues argued that student modelling is essential to provide adaptive instruction in tutoring systems and showed that effective modelling is possible, despite being enormously challenging. Student modelling plays a prominent role in many intelligent tutoring systems (ITSs) that address problem-solving domains. However,…
Descriptors: Physics, Science Instruction, Pretests Posttests, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy; Liew, Chun Wai – International Educational Data Mining Society, 2018
Recent works on Intelligent Tutoring Systems have focused on more complicated knowledge domains, which pose challenges in automated assessment of student performance. In particular, while the system can log every user action and keep track of the student's solution state, it is unable to determine the hidden intermediate steps leading to such…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Data Analysis, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Surubaru, Teodora; Isoc, Dorin – International Association for Development of the Information Society, 2019
The requirement to assure the teaching of critical thinking put the school in front of its own weaknesses. A profound criticism highlights limitations, hindrances and obstacles that are difficult to pass without the personal efforts of the teachers. Following criticism, one can identify a set of requirements that would allow for improvement and…
Descriptors: Critical Thinking, Teaching Methods, Barriers, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Richard; Brna, Paul – International Journal of Artificial Intelligence in Education, 2016
We reflect upon a paper we wrote that was published in 1995 (20 years ago). We outline the motivation for the work and situate it in the state of the art at that time. We suggest that a key contribution was to highlight the need to provide support for learners who reason with external representations. The support must be flexible enough to…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Problem Solving, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Aleven, Vincent; Roll, Ido; McLaren, Bruce M.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
Help seeking is an important process in self-regulated learning (SRL). It may influence learning with intelligent tutoring systems (ITSs), because many ITSs provide help, often at the student's request. The Help Tutor was a tutor agent that gave in-context, real-time feedback on students' help-seeking behavior, as they were learning with an ITS.…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Help Seeking, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Wiggins, Joseph B.; Grafsgaard, Joseph F.; Boyer, Kristy Elizabeth; Wiebe, Eric N.; Lester, James C. – International Journal of Artificial Intelligence in Education, 2017
In recent years, significant advances have been made in intelligent tutoring systems, and these advances hold great promise for adaptively supporting computer science (CS) learning. In particular, tutorial dialogue systems that engage students in natural language dialogue can create rich, adaptive interactions. A promising approach to increasing…
Descriptors: Intelligent Tutoring Systems, Self Efficacy, Computer Science Education, Dialogs (Language)
Eagle, Michael; Barnes, Tiffany – International Educational Data Mining Society, 2015
Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…
Descriptors: Interaction, Teacher Student Relationship, Intelligent Tutoring Systems, Data
Sudol, Leigh Ann; Rivers, Kelly; Harris, Thomas K. – International Educational Data Mining Society, 2012
In complex problem solving domains, correct solutions are often comprised of a combination of individual components. Students usually go through several attempts, each attempt reflecting an individual solution state that can be observed during practice. Classic metrics to measure student performance over time rely on counting the number of…
Descriptors: Problem Solving, Tutors, Feedback (Response), Probability
Miwa, Kazuhisa; Kojima, Kazuaki; Terai, Hitoshi – International Association for Development of the Information Society, 2014
Tutoring systems provide students with various types of on-demand and context-sensitive hints. Students are required to consciously adapt their help-seeking behavior, proactively seek help in some situations, and solve problems independently without supports in other situations. We define the latter behavior as stoic behavior in hint seeking. In…
Descriptors: Help Seeking, Student Behavior, Cues, Goal Orientation
Peer reviewed Peer reviewed
Direct linkDirect link
Kojima, Kazuaki; Miwa, Kazuhisa; Matsui, Tatsunori – International Journal of Artificial Intelligence in Education, 2013
Problem posing, by which learners create new problems by themselves, is an important activity in mathematics education. However, novice learners have difficulty in posing problems, particularly when formulating appropriate solution structures of problems. Although they are provided with example problems that can serve as hints for composing novel…
Descriptors: Foreign Countries, Mathematics Education, Problem Solving, Learning Strategies
Previous Page | Next Page »
Pages: 1  |  2