NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Evaluative15
Journal Articles13
Speeches/Meeting Papers2
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment Program…1
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Kitto, Kirsty; Hicks, Ben; Shum, Simon Buckingham – British Journal of Educational Technology, 2023
An extraordinary amount of data is becoming available in educational settings, collected from a wide range of Educational Technology tools and services. This creates opportunities for using methods from Artificial Intelligence and Learning Analytics (LA) to improve learning and the environments in which it occurs. And yet, analytics results…
Descriptors: Causal Models, Learning Analytics, Educational Theories, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Caspari-Sadeghi, Sima – Cogent Education, 2023
Data-driven decision-making and data-intensive research are becoming prevalent in many sectors of modern society, i.e. healthcare, politics, business, and entertainment. During the COVID-19 pandemic, huge amounts of educational data and new types of evidence were generated through various online platforms, digital tools, and communication…
Descriptors: Learning Analytics, Data Analysis, Higher Education, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Witzenberger, Kevin; Gulson, Kalervo N. – Learning, Media and Technology, 2021
Pre-emption describes a system of automated knowledge creation and intervention that steers the present towards a desirable future, by building on knowledge derived from the past. Folding together temporalities makes it impossible to disprove pre-emption. It is increasingly featured within EdTech, introducing new forms of automated governance into…
Descriptors: Educational Technology, Technology Uses in Education, Governance, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Doleck, Tenzin; Lemay, David John; Basnet, Ram B.; Bazelais, Paul – Education and Information Technologies, 2020
Large swaths of data are readily available in various fields, and education is no exception. In tandem, the impetus to derive meaningful insights from data gains urgency. Recent advances in deep learning, particularly in the area of voice and image recognition and so-called complete knowledge games like chess, go, and StarCraft, have resulted in a…
Descriptors: Learning Analytics, Prediction, Information Retrieval, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Gongchang, Yueban; Wang, Yibing – AERA Online Paper Repository, 2020
Location tracking devices are becoming increasingly popular in practice to study movement of customers or track inventory. However, using location tracking devices in education contexts is quite novel. In this paper, we present a robust Bayesian nonparametric mixture model that clusters location data. We successfully apply this model on location…
Descriptors: Bayesian Statistics, Nonparametric Statistics, Multivariate Analysis, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
The interactive learning is a continuous process, which is full of a large number of learning interaction activities. The data generated between learners and learning interaction activities can reflect the online learning behaviors. Through the correlation analysis among learning interaction activities, this paper discusses the potential…
Descriptors: Behavior Patterns, Learning Analytics, Decision Making, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Fu; Cui, Ying – Journal of Educational Data Mining, 2020
Effective learning outcome modeling is crucial to the success of learning evaluation in education. In the digital age, the movement towards online learning and computerized assessments has resulted in an explosion of structured and unstructured educational data (e.g., learners' problem-solving process data), which offers new opportunities for…
Descriptors: Models, Outcomes of Education, Data Analysis, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Arantes, Janine Aldous – Australian Educational Researcher, 2023
Recent negotiations of 'data' in schools place focus on student assessment and NAPLAN. However, with the rise in artificial intelligence (AI) underpinning educational technology, there is a need to shift focus towards the value of teachers' digital data. By doing so, the broader debate surrounding the implications of these technologies and rights…
Descriptors: Foreign Countries, Elementary Secondary Education, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Gillani, Nabeel; Eynon, Rebecca; Chiabaut, Catherine; Finkel, Kelsey – Educational Technology & Society, 2023
Recent advances in Artificial Intelligence (AI) have sparked renewed interest in its potential to improve education. However, AI is a loose umbrella term that refers to a collection of methods, capabilities, and limitations--many of which are often not explicitly articulated by researchers, education technology companies, or other AI developers.…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Technology, Educational Benefits
Peer reviewed Peer reviewed
Direct linkDirect link
Dipace, Anna; Loperfido, F. Feldia; Scarinci, Alessia – Research on Education and Media, 2018
This article describes Learning Analytics (LA) as a predictive and formative approach that enables the planning of educational scenarios in line with students' needs and languages in order to set a priori and in progress systems of control and inspection of the following: consistency, relevance and effectiveness of training objectives, curriculum…
Descriptors: Learning Analytics, Individualized Instruction, Curriculum Design, Student Centered Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Peer reviewed Peer reviewed
Direct linkDirect link
Jessica Joiner; Matthew Piva; Courtney Turrin; Steve W. C. Chang – npj Science of Learning, 2017
Learning about the world is critical to survival and success. In social animals, learning about others is a necessary component of navigating the social world, ultimately contributing to increasing evolutionary fitness. How humans and nonhuman animals represent the internal states and experiences of others has long been a subject of intense…
Descriptors: Socialization, Brain Hemisphere Functions, Interpersonal Competence, Prediction