Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 7 |
| Since 2007 (last 20 years) | 39 |
Descriptor
Source
Author
Publication Type
| Reports - Evaluative | 202 |
| Journal Articles | 138 |
| Speeches/Meeting Papers | 62 |
| Information Analyses | 3 |
| Reports - Descriptive | 2 |
| Numerical/Quantitative Data | 1 |
| Opinion Papers | 1 |
Education Level
| Higher Education | 3 |
| Elementary Education | 2 |
| Postsecondary Education | 2 |
| Grade 4 | 1 |
| High Schools | 1 |
Audience
| Researchers | 4 |
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 2 |
| Embedded Figures Test | 1 |
| Law School Admission Test | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Eray Selçuk; Ergül Demir – International Journal of Assessment Tools in Education, 2024
This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item…
Descriptors: Item Response Theory, Item Analysis, Test Items, Simulation
Zhichen Guo; Daxun Wang; Yan Cai; Dongbo Tu – Educational and Psychological Measurement, 2024
Forced-choice (FC) measures have been widely used in many personality or attitude tests as an alternative to rating scales, which employ comparative rather than absolute judgments. Several response biases, such as social desirability, response styles, and acquiescence bias, can be reduced effectively. Another type of data linked with comparative…
Descriptors: Item Response Theory, Models, Reaction Time, Measurement Techniques
Mohammed, M. A.; Ibrahim, A. I. N.; Siri, Z.; Noor, N. F. M. – Sociological Methods & Research, 2019
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to…
Descriptors: Monte Carlo Methods, Calculus, Sampling, Simulation
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Smith, Ben O.; Wagner, Jamie – Journal of Economic Education, 2018
In 2016, Walstad and Wagner developed a procedure to split pre-test and post-test responses into four learning types: positive, negative, retained, and zero learning. This disaggregation is not only useful in academic studies; but also provides valuable insight to the practitioner: an instructor would take different mitigating actions in response…
Descriptors: Pretests Posttests, Value Added Models, Guessing (Tests), Monte Carlo Methods
Sinharay, Sandip – Journal of Educational Measurement, 2016
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
Descriptors: Sampling, Research Methodology, Error Patterns, Monte Carlo Methods
Phillips, Paul; Moutinho, Luiz; Godinho, Pedro – Higher Education Quarterly, 2018
This paper aims to extend understanding of the business and societal impact of academic research. From a business school perspective, it has taken stock of the role of academic research and relevance in business and society. The proposed conceptual framework highlights the forces influencing the pursuit of academic rigour and relevance in…
Descriptors: Outcome Measures, Outcomes of Education, Educational Research, Relevance (Education)
Cribb, Serena J.; Olaithe, Michelle; Di Lorenzo, Renata; Dunlop, Patrick D.; Maybery, Murray T. – Journal of Autism and Developmental Disorders, 2016
People with autism show superior performance to controls on the Embedded Figures Test (EFT). However, studies examining the relationship between autistic-like traits and EFT performance in neurotypical individuals have yielded inconsistent findings. To examine the inconsistency, a meta-analysis was conducted of studies that (a) compared high and…
Descriptors: Autism, Pervasive Developmental Disorders, Meta Analysis, Symptoms (Individual Disorders)
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…
Descriptors: Causal Models, Structural Equation Models, Formative Evaluation, Measurement
Devlieger, Ines; Mayer, Axel; Rosseel, Yves – Educational and Psychological Measurement, 2016
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and…
Descriptors: Regression (Statistics), Comparative Analysis, Structural Equation Models, Monte Carlo Methods
Wagler, Amy E. – Journal of Educational and Behavioral Statistics, 2014
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Descriptors: Hierarchical Linear Modeling, Cluster Grouping, Heterogeneous Grouping, Monte Carlo Methods
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao – Educational and Psychological Measurement, 2013
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Descriptors: Item Response Theory, Computation, Matrices, Statistical Inference
Hung, Lai-Fa – Applied Psychological Measurement, 2012
Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…
Descriptors: Social Science Research, Markov Processes, Reading Tests, Social Sciences
Fan, Weihua; Hancock, Gregory R. – Journal of Educational and Behavioral Statistics, 2012
This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…
Descriptors: Robustness (Statistics), Hypothesis Testing, Monte Carlo Methods, Simulation

Peer reviewed
Direct link
