NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
William R. Dardick; Jeffrey R. Harring – Journal of Educational and Behavioral Statistics, 2025
Simulation studies are the basic tools of quantitative methodologists used to obtain empirical solutions to statistical problems that may be impossible to derive through direct mathematical computations. The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular…
Descriptors: Statistics, Statistics Education, Problem Solving, Multivariate Analysis
Reardon, Sean F.; Shear, Benjamin R.; Castellano, Katherine E.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2017
Test score distributions of schools or demographic groups are often summarized by frequencies of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple groups' test score distributions from such data. Because…
Descriptors: Scores, Statistical Analysis, Models, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Luh, Wei-Ming; Guo, Jiin-Huarng – Journal of Experimental Education, 2011
Sample size determination is an important issue in planning research. In the context of one-way fixed-effect analysis of variance, the conventional sample size formula cannot be applied for the heterogeneous variance cases. This study discusses the sample size requirement for the Welch test in the one-way fixed-effect analysis of variance with…
Descriptors: Sample Size, Monte Carlo Methods, Statistical Analysis, Heterogeneous Grouping
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ramon Barrada, Juan; Veldkamp, Bernard P.; Olea, Julio – Applied Psychological Measurement, 2009
Computerized adaptive testing is subject to security problems, as the item bank content remains operative over long periods and administration time is flexible for examinees. Spreading the content of a part of the item bank could lead to an overestimation of the examinees' trait level. The most common way of reducing this risk is to impose a…
Descriptors: Item Banks, Adaptive Testing, Item Analysis, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Pandharikar, N. S.; Deshpande, M. N. – International Journal of Mathematical Education in Science and Technology, 2002
In this note we consider an experiment involving an urn and k balls with numbers 1, 2, 3, ..., k. The experiment consists of drawing n balls either with replacement or without replacement. We note some surprising results.
Descriptors: Probability, Comparative Analysis, Demonstrations (Educational), Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods
Peer reviewed Peer reviewed
Magee, Kevin N.; Overall, John E. – Educational and Psychological Measurement, 1992
Formulae for estimating individual rater reliabilities from analysis of treatment effects are presented and evaluated. Monte Carlo methods illustrate the formulae. Results indicate that large sample sizes, large true treatment effects, and large differences in the actual reliabilities of raters are required for the approach to be useful. (SLD)
Descriptors: Effect Size, Estimation (Mathematics), Experimental Groups, Mathematical Formulas