Descriptor
| Bayesian Statistics | 76 |
| Estimation (Mathematics) | 76 |
| Equations (Mathematics) | 27 |
| Mathematical Models | 26 |
| Item Response Theory | 24 |
| Maximum Likelihood Statistics | 24 |
| Ability | 20 |
| Simulation | 17 |
| Adaptive Testing | 16 |
| Test Items | 16 |
| Computer Assisted Testing | 14 |
| More ▼ | |
Source
Author
Publication Type
| Reports - Evaluative | 76 |
| Journal Articles | 44 |
| Speeches/Meeting Papers | 17 |
| Information Analyses | 3 |
| Numerical/Quantitative Data | 2 |
| Collected Works - General | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| ACT Assessment | 1 |
| COMPASS (Computer Assisted… | 1 |
| Graduate Record Examinations | 1 |
| Law School Admission Test | 1 |
| National Assessment of… | 1 |
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Peer reviewedGross, Alan L. – Journal of Educational and Behavioral Statistics, 1997
An analytic expression is derived for the posterior distribution of the bivariate correlation given a data set that contains missing values on both variables. Interval estimates of the unknown correlation are then computed in terms of the highest posterior density regions. A sampling study illustrates the procedure. (SLD)
Descriptors: Bayesian Statistics, Correlation, Estimation (Mathematics)
Peer reviewedGross, Alan L. – Multivariate Behavioral Research, 2000
Presents a Bayesian method for obtaining an interval estimate of the population squared multiple correlation from an incomplete multivariate normal data set. Estimates were constructed using Gibbs sampling. Simulation studies indicate that the method can yield accurate interval estimates of the population squared multiple correlation. (SLD)
Descriptors: Bayesian Statistics, Correlation, Estimation (Mathematics), Simulation
Peer reviewedGross, Alan L.; Torres-Quevedo, Rocio – Psychometrika, 1995
The posterior distribution of the bivariate correlation is analytically derived given a data set where "X" is completely observed, but "Y" is missing at random for a portion of the sample. Interval estimates of the correlation are constructed from the posterior distribution in terms of the highest density regions. (SLD)
Descriptors: Bayesian Statistics, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewedZeng, Lingjia – Applied Psychological Measurement, 1997
Proposes a marginal Bayesian estimation procedure to improve item parameter estimates for the three parameter logistic model. Computer simulation suggests that implementing the marginal Bayesian estimation algorithm with four-parameter beta prior distributions and then updating the priors with empirical means of updated intermediate estimates can…
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Statistical Distributions
Peer reviewedBoik, Robert J. – Journal of Educational and Behavioral Statistics, 1997
An analysis of repeated measures designs is proposed that uses an empirical Bayes estimator of the covariance matrix. The proposed analysis behaves like a univariate analysis when sample size is small or sphericity nearly satisfied, but behaves like multivariate analysis when sample size is large or sphericity is strongly violated. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis, Research Design
Peer reviewedShi, Jian-Qing; Lee, Sik-Yum – Psychometrika, 1997
Explores posterior analysis in estimating factor score in a confirmatory factor analysis model with polytomous, censored or truncated data, and studies the accuracy of Bayesian estimates through simulation. Results support these Bayesian estimates for statistical inference. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Factor Structure, Scores
Peer reviewedSeltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis
Peer reviewedRaudenbush, Stephen W. – Journal of Educational Statistics, 1988
Estimation theory in educational statistics and the application of hierarchical linear models are reviewed. Observations within each group vary as a function of microparameters. Microparameters vary across the population of groups as a function of macroparameters. Bayes and empirical Bayes viewpoints review examples with two levels of hierarchy.…
Descriptors: Bayesian Statistics, Educational Research, Equations (Mathematics), Estimation (Mathematics)
Houston, Walter M.; Woodruff, David J. – 1997
Maximum likelihood and least-squares estimates of parameters from the logistic regression model are derived from an iteratively reweighted linear regression algorithm. Empirical Bayes estimates are derived using an m-group regression model to regress the within-group estimates toward common values. The m-group regression model assumes that the…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewedGigerenzer, Gerd; Hoffrage, Ulrich – Psychological Review, 1995
It is shown that Bayesian algorithms are computationally simpler in frequency formats than in the probability formats used in previous research. Analysis of several thousand solutions to Bayesian problems showed that when information was presented in frequency formats, statistically naive participants derived up to 50% of inferences by Bayesian…
Descriptors: Algorithms, Bayesian Statistics, Computation, Estimation (Mathematics)
Peer reviewedCooil, Bruce; Rust, Roland T. – Psychometrika, 1995
A proportional reduction in loss (PRL) measure for reliability of categorical data is explored for the situation in which each of "N" judges assigns a subject to one of "K" categories. Calculating a lower bound for reliability under more general conditions than had been proposed is demonstrated. (SLD)
Descriptors: Bayesian Statistics, Classification, Equations (Mathematics), Estimation (Mathematics)
Muthen, Bengt – 1994
This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Maximum Likelihood Statistics, Monte Carlo Methods
Kim, Seock-Ho; Cohen, Allan S. – 1999
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes
Peer reviewedThum, Yeow Meng – Journal of Educational and Behavioral Statistics, 1997
A class of two-stage models is developed to accommodate three common characteristics of behavioral data: (1) its multivariate nature; (2) the typical small sample size; and (3) the possibility of missing observations. The model, as illustrated, permits estimation of the full spectrum of plausible measurement error structures. (SLD)
Descriptors: Bayesian Statistics, Behavior Patterns, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewedFligner, Michael A.; Verducci, Joseph S. – Psychometrika, 1990
The concept of consensus ordering is defined, and formulas for exact and approximate posterior probabilities for consensus ordering are developed under the assumption of a generalized Mallows' model with a diffuse conjugate prior. These methods are applied to a data set concerning 98 college students. (SLD)
Descriptors: Bayesian Statistics, College Students, Equations (Mathematics), Estimation (Mathematics)


