NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Su, Shu-Ching; Sedory, Stephen A.; Singh, Sarjinder – Sociological Methods & Research, 2015
In this article, we adjust the Kuk randomized response model for collecting information on a sensitive characteristic for increased protection and efficiency by making use of forced "yes" and forced "no" responses. We first describe Kuk's model and then the proposed adjustment to Kuk's model. Next, by means of a simulation…
Descriptors: Data Collection, Models, Responses, Efficiency
Peer reviewed Peer reviewed
Direct linkDirect link
Köse, Alper – Educational Research and Reviews, 2014
The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…
Descriptors: Data Analysis, Data Collection, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Puma, Michael J.; Olsen, Robert B.; Bell, Stephen H.; Price, Cristofer – National Center for Education Evaluation and Regional Assistance, 2009
This NCEE Technical Methods report examines how to address the problem of missing data in the analysis of data in Randomized Controlled Trials (RCTs) of educational interventions, with a particular focus on the common educational situation in which groups of students such as entire classrooms or schools are randomized. Missing outcome data are a…
Descriptors: Educational Research, Research Design, Research Methodology, Control Groups
Peer reviewed Peer reviewed
Graham, John W.; And Others – Multivariate Behavioral Research, 1996
The utility of the three-form design coupled with maximum likelihood methods for estimation of missing values was evaluated. Simulation studies demonstrate that maximum likelihood estimation and multiple imputation methods produce the most efficient and least biased estimates of variances and covariances for normally distributed and slightly…
Descriptors: Data Collection, Estimation (Mathematics), Maximum Likelihood Statistics, Research Design
Peer reviewed Peer reviewed
Andrich, David; Luo, Guanzhong – Applied Psychological Measurement, 1993
A unidimensional model for responses to statements that have an unfolding structure was constructed from the cumulative Rasch model for ordered response categories. A joint maximum likelihood estimation procedure was investigated. Analyses of data from a small simulation and a real data set show that the model is readily applicable. (SLD)
Descriptors: Attitude Measures, Data Collection, Equations (Mathematics), Item Response Theory
Swanson, David; And Others – Small Town, 1995
Increasingly, unpopular facilities are sited in sparsely populated areas for which data are unavailable. The Local Expert Procedure (LEP) estimates selected demographic characteristics of small, rural areas by combining the housing unit method of population estimation with random sampling and key informant ethnography. Factors affecting the…
Descriptors: Data Collection, Demography, Maximum Likelihood Statistics, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Carter, Rufus Lynn – Research & Practice in Assessment, 2006
Many times in both educational and social science research it is impossible to collect data that is complete. When administering a survey, for example, people may answer some questions and not others. This missing data causes a problem for researchers using structural equation modeling (SEM) techniques for data analyses. Because SEM and…
Descriptors: Structural Equation Models, Error of Measurement, Data, Change Strategies