Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 24 |
| Since 2017 (last 10 years) | 76 |
| Since 2007 (last 20 years) | 165 |
Descriptor
| Bayesian Statistics | 234 |
| Models | 79 |
| Probability | 56 |
| Computation | 43 |
| Monte Carlo Methods | 31 |
| Computer Software | 29 |
| Item Response Theory | 26 |
| Teaching Methods | 26 |
| Evaluation Methods | 24 |
| Simulation | 23 |
| Statistical Analysis | 23 |
| More ▼ | |
Source
Author
| Lee, Sik-Yum | 5 |
| Levy, Roy | 5 |
| Mislevy, Robert J. | 5 |
| Song, Xin-Yuan | 4 |
| Wagenmakers, Eric-Jan | 4 |
| Gelman, Andrew | 3 |
| Rouder, Jeffrey N. | 3 |
| Sinharay, Sandip | 3 |
| Tenenbaum, Joshua B. | 3 |
| Almond, Russell G. | 2 |
| Ames, Allison J. | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 6 |
| Teachers | 6 |
| Practitioners | 3 |
| Students | 3 |
Location
| United Kingdom (England) | 3 |
| Australia | 2 |
| California | 2 |
| United Kingdom | 2 |
| United States | 2 |
| France | 1 |
| Germany | 1 |
| India | 1 |
| Japan | 1 |
| Louisiana | 1 |
| Mexico | 1 |
| More ▼ | |
Laws, Policies, & Programs
| Individuals with Disabilities… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| Early Childhood Longitudinal… | 2 |
| Iowa Tests of Basic Skills | 1 |
| Program for International… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Heidemanns, Merlin; Gelman, Andrew; Morris, G. Elliott – Grantee Submission, 2020
During modern general election cycles, information to forecast the electoral outcome is plentiful. So-called fundamentals like economic growth provide information early in the cycle. Trial-heat polls become informative closer to Election Day. Our model builds on (Linzer, 2013) and is implemented in Stan (Team, 2020). We improve on the estimation…
Descriptors: Evaluation, Bayesian Statistics, Elections, Presidents
Dittrich, Dino; Leenders, Roger Th. A. J.; Mulder, Joris – Sociological Methods & Research, 2019
Currently available (classical) testing procedures for the network autocorrelation can only be used for falsifying a precise null hypothesis of no network effect. Classical methods can be neither used for quantifying evidence for the null nor for testing multiple hypotheses simultaneously. This article presents flexible Bayes factor testing…
Descriptors: Correlation, Bayesian Statistics, Networks, Evaluation Methods
Hanauer, Matthew; Yel, Nedim – Research in the Schools, 2018
Bayesian analysts use informed priors to improve analytic precision and prediction; however, rarely have they applied a mixed methods approach that uses qualitative data to develop these priors. Yet, using qualitatively informed priors can be useful when making predictions in the context of small sample sizes, which is common in school-based…
Descriptors: Decision Making, Response to Intervention, Mixed Methods Research, Bayesian Statistics
Hu, Jingchen – Journal of Statistics Education, 2020
We propose a semester-long Bayesian statistics course for undergraduate students with calculus and probability background. We cultivate students' Bayesian thinking with Bayesian methods applied to real data problems. We leverage modern Bayesian computing techniques not only for implementing Bayesian methods, but also to deepen students'…
Descriptors: Bayesian Statistics, Statistics Education, Undergraduate Students, Computation
Eadie, Gwendolyn; Huppenkothen, Daniela; Springford, Aaron; McCormick, Tyler – Journal of Statistics Education, 2019
We present an active-learning strategy for undergraduates that applies Bayesian analysis to candy-covered chocolate m&m's®. The exercise is best suited for small class sizes and tutorial settings, after students have been introduced to the concepts of Bayesian statistics. The exercise takes advantage of the nonuniform distribution of…
Descriptors: Undergraduate Students, Bayesian Statistics, Active Learning, Learning Activities
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Chen, Yetian; González-Brenes, José P.; Tian, Jin – International Educational Data Mining Society, 2016
Skill prerequisite information is useful for tutoring systems that assess student knowledge or that provide remediation. These systems often encode prerequisites as graphs designed by subject matter experts in a costly and time-consuming process. In this paper, we introduce "Combined student Modeling and prerequisite Discovery"…
Descriptors: Bayesian Statistics, Prerequisites, Graphs, Intelligent Tutoring Systems
Tijms, Henk – Teaching Statistics: An International Journal for Teachers, 2015
This teaching note gives a real-life example of Bayesian thinking. It discusses how credible accusations are that the outcome of the draw for the quarter-finals in the 2013 European Champions League Football was manipulated.
Descriptors: Bayesian Statistics, Team Sports, Deception, Foreign Countries
What Works Clearinghouse, 2023
The appendices accompany the full report "Using Bayesian Meta-Analysis to Explore the Components of Early Literacy Interventions. WWC 2023-008," (ED630495), which pilots a new taxonomy developed by early literacy experts and intervention developers as part of a larger effort to develop standard nomenclature for the components of literacy…
Descriptors: Bayesian Statistics, Meta Analysis, Early Intervention, Literacy
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Hicks, Tyler; Rodríguez-Campos, Liliana; Choi, Jeong Hoon – American Journal of Evaluation, 2018
To begin statistical analysis, Bayesians quantify their confidence in modeling hypotheses with priors. A prior describes the probability of a certain modeling hypothesis apart from the data. Bayesians should be able to defend their choice of prior to a skeptical audience. Collaboration between evaluators and stakeholders could make their choices…
Descriptors: Bayesian Statistics, Evaluation Methods, Statistical Analysis, Hypothesis Testing
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Bao, Lei; Koenig, Kathleen; Xiao, Yang; Fritchman, Joseph; Zhou, Shaona; Chen, Cheng – Physical Review Physics Education Research, 2022
Abilities in scientific thinking and reasoning have been emphasized as core areas of initiatives, such as the Next Generation Science Standards or the College Board Standards for College Success in Science, which focus on the skills the future will demand of today's students. Although there is rich literature on studies of how these abilities…
Descriptors: Physics, Science Instruction, Teaching Methods, Thinking Skills

Peer reviewed
Direct link
