NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive51
Journal Articles42
Speeches/Meeting Papers2
Opinion Papers1
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 31 to 45 of 51 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – School Psychology Quarterly, 2018
The use of multilevel modeling (MLM) to analyze nested data has grown in popularity over the years in the study of school psychology. However, with the increase in use, several statistical misconceptions about the technique have also proliferated. We discuss some commonly cited myths and golden rules related to the use of MLM, explain their…
Descriptors: Hierarchical Linear Modeling, School Psychology, Misconceptions, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Educational and Psychological Measurement, 2015
A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…
Descriptors: Correlation, Computation, Statistical Analysis, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Selig, James P.; Trott, Arianna; Lemberger, Matthew E. – Journal for Specialists in Group Work, 2017
Researchers in group counseling often encounter complex data from individual clients who are members of a group. Clients in the same group may be more similar than clients from different groups and this can lead to violations of statistical assumptions. The complexity of the data also means that predictors and outcomes can be measured at both the…
Descriptors: Group Counseling, Hierarchical Linear Modeling, Research, Client Characteristics (Human Services)
Peer reviewed Peer reviewed
Direct linkDirect link
Theobald, Elli – CBE - Life Sciences Education, 2018
Discipline-based education researchers have a natural laboratory--classrooms, programs, colleges, and universities. Studies that administer treatments to multiple sections, in multiple years, or at multiple institutions are particularly compelling for two reasons: first, the sample sizes increase, and second, the implementation of the treatments…
Descriptors: Educational Research, Hierarchical Linear Modeling, Program Implementation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sulis, Isabella; Toland, Michael D. – Journal of Early Adolescence, 2017
Item response theory (IRT) models are the main psychometric approach for the development, evaluation, and refinement of multi-item instruments and scaling of latent traits, whereas multilevel models are the primary statistical method when considering the dependence between person responses when primary units (e.g., students) are nested within…
Descriptors: Hierarchical Linear Modeling, Item Response Theory, Psychometrics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Guskey, Thomas R. – Journal of Staff Development, 2016
Effective professional learning evaluation requires consideration of five critical stages or levels of information. These five levels, which are presented in this article, represent an adaptation of an evaluation model developed by Kirkpatrick (1959, 1998) for judging the value of supervisory training programs in business and industry.…
Descriptors: Hierarchical Linear Modeling, Outcomes of Education, Supervisory Training, Faculty Development
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2017
Design-based methods have recently been developed as a way to analyze data from impact evaluations of interventions, programs, and policies. The impact estimators are derived using the building blocks of experimental designs with minimal assumptions, and have good statistical properties. The methods apply to randomized controlled trials (RCTs) and…
Descriptors: Design, Randomized Controlled Trials, Quasiexperimental Design, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goria, Cecilia; Lagares, Manuel – Research-publishing.net, 2015
Research into open education has identified a "high number of participants" and "unpredictable mixed abilities" as factors responsible for the relatively weak presence of language Massive Open Online Courses (MOOCs). This contribution presents a model for open online language courses that aims to bridge this gap. The tangible…
Descriptors: Online Courses, Large Group Instruction, Second Language Instruction, Spanish
Nese, Joseph F. T.; Lai, Cheng-Fei; Anderson, Daniel – Behavioral Research and Teaching, 2013
Longitudinal data analysis in education is the study growth over time. A longitudinal study is one in which repeated observations of the same variables are recorded for the same individuals over a period of time. This type of research is known by many names (e.g., time series analysis or repeated measures design), each of which can imply subtle…
Descriptors: Longitudinal Studies, Data Analysis, Educational Research, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Pokropek, Artur – Sociological Methods & Research, 2015
This article combines statistical and applied research perspective showing problems that might arise when measurement error in multilevel compositional effects analysis is ignored. This article focuses on data where independent variables are constructed measures. Simulation studies are conducted evaluating methods that could overcome the…
Descriptors: Error of Measurement, Hierarchical Linear Modeling, Simulation, Evaluation Methods
Rindskopf, David; Shadish, William; Hedges, Larry V. – Online Submission, 2012
This conference presentation demonstrates a multilevel model for analyzing single case designs. The model is implemented in the Bayesian program WinBUGS. The authors show how it is possible to estimate a d-statistic like the one in Hedges, Pustejovsky and Shadish (2012) in this program. Results are demonstrated on an example.
Descriptors: Effect Size, Computation, Hierarchical Linear Modeling, Research Design
Pages: 1  |  2  |  3  |  4