NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1,651 to 1,665 of 4,923 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Saxena, Sachin; Satsangee, Soami P. – Journal of Chemical Education, 2014
Remote access to real experiments is crucial for distance learners to experience the sciences. The exploitation of technology for this purpose is advantageous in global teaching and in exchange of ideas on a single front irrespective of distance barriers. Implementation of the distance method leads to cost-effective integrated-e-learning where…
Descriptors: Science Instruction, Distance Education, Chemistry, Science Experiments
Paul A. E. Piunno; Adrian Zetina; Norman Chu; Anthony J. Tavares; M. Omair Noor; Eleonora Petryayeva; Uvaraj Uddayasankar; Andrew Veglio – Journal of Chemical Education, 2014
An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Rajala, Jonathan W.; Evans, Edward A.; Chase, George G. – Chemical Engineering Education, 2015
Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…
Descriptors: Chemical Engineering, Undergraduate Students, Science Laboratories, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Montangero, Marc – Journal of Chemical Education, 2015
When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…
Descriptors: Science Instruction, Secondary School Science, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin – Journal of Chemical Education, 2015
A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…
Descriptors: Introductory Courses, High School Students, Secondary School Science, Cost Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi – Journal of Chemical Education, 2015
The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…
Descriptors: Molecular Structure, Technology, Interdisciplinary Approach, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Petrovic, Dus?an; Zlatovic´, Mario – Journal of Chemical Education, 2015
A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…
Descriptors: Science Experiments, Laboratory Experiments, Undergraduate Study, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J. – Journal of Chemical Education, 2015
Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…
Descriptors: Science Instruction, Chemical Engineering, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P. – Journal of Chemical Education, 2015
NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…
Descriptors: Science Instruction, Spectroscopy, Teaching Methods, Environmental Education
Peer reviewed Peer reviewed
Direct linkDirect link
El Seoud, Omar A.; Galgano, Paula D.; Are^as, Elizabeth P. G.; Moraes, Jamille M. – Journal of Chemical Education, 2015
The determination of kinetic data is central to reaction mechanism; science courses usually include experiments on chemical kinetics. Thanks to PC-controlled data acquisition and availability of software, the students calculate rate constants, whether the experiment has been done properly or not. This contrasts with their experience in, e.g.,…
Descriptors: Chemistry, Kinetics, Organic Chemistry, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Johns, Gary; Mentzer, Nathan – Technology and Engineering Teacher, 2016
Teachers can find opportunities to incorporate design thinking and scientific inquiry within any lesson where a constraint of the design can be connected to a scientific experiment. Within a lesson, this connection establishes context between engineering and science and can positively impact students' learning and interest in these subjects. The…
Descriptors: Integrated Curriculum, Design, Inquiry, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Harbottle, Jennifer; Strangward, Patrick; Alnuamaani, Catherine; Lawes, Surita; Patel, Sanjai; Prokop, Andreas – School Science Review, 2016
The "droso4schools" project aims to introduce the fruit fly "Drosophila" as a powerful modern teaching tool to convey curriculum-relevant specifications in biology lessons. Flies are easy and cheap to breed and have been at the forefront of biology research for a century, providing unique conceptual understanding of biology and…
Descriptors: Science Instruction, Science Education, Genetics, Entomology
Peer reviewed Peer reviewed
Direct linkDirect link
Setalo, Gyorgy, Jr. – Biochemistry and Molecular Biology Education, 2013
Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…
Descriptors: Genetics, Cytology, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – Physics Education, 2013
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Descriptors: Science Instruction, Physics, Molecular Structure, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Pieraccini, M.; Selleri, S. – Physics Education, 2013
Catt's anomaly is a sort of "thought experiment" (a "gedankenexperiment") where electrons seem to travel at the speed of light. Although its author argued with conviction for many years, it has a clear and satisfactory solution and it can be considered indubitably just an apparent paradox. Nevertheless, it is curious and…
Descriptors: Science Instruction, Physics, Science Experiments, Molecular Structure
Pages: 1  |  ...  |  107  |  108  |  109  |  110  |  111  |  112  |  113  |  114  |  115  |  ...  |  329