ERIC Number: EJ1402589
Record Type: Journal
Publication Date: 2023
Pages: 20
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Automating the Mapping of Course Learning Outcomes to Program Learning Outcomes Using Natural Language Processing for Accurate Educational Program Evaluation
Zaki, Nazar; Turaev, Sherzod; Shuaib, Khaled; Krishnan, Anusuya; Mohamed, Elfadil
Education and Information Technologies, v28 n12 p16723-16742 2023
Quality control and assurance plays a fundamental role within higher education contexts. One means by which quality control can be performed is by mapping the course learning outcomes (CLOs) to the program learning outcomes (PLO). This paper describes a system by which this mapping process can be automated and validated. The proposed AI-based system automates the mapping process through the use of natural language processing. The framework underwent testing using two actual datasets from two educational programs, and the findings were promising. A testament to the potential of the suggested framework was the precision of the mapping detected (83.1% and 88.1% for the two programs, respectively) compared to the mapping performed by the domain experts. A web-based tool was created to help teachers and administrators execute automatic mappings (https://dsaluaeu.github.io/mapper.html). The data and software used in this research project can be found at the following URL: https://github.com/nzaki02/CLO-PLO.
Descriptors: Program Evaluation, Outcomes of Education, Natural Language Processing, Higher Education, Automation, Concept Mapping, Accuracy
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link-springer-com.bibliotheek.ehb.be/
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Data File: URL: https://github.com/nzaki02/CLO-PLO
Author Affiliations: N/A