NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sanii, Babak – Journal of Chemical Education, 2020
Augmented reality (AR) is a means of superimposing artificial 3D objects over the real world via a mobile device. An AR standard file format has been recently implemented on mobile devices that current students commonly own. Here we describe three relatively nontechnical methods to produce 3D AR objects for chemistry courses and demonstrate their…
Descriptors: Computer Simulation, Computer Peripherals, Handheld Devices, Visualization
Peer reviewed Peer reviewed
Direct linkDirect link
Peterson, Celeste N.; Tavana, Sara Z.; Akinleye, Olukemi P.; Johnson, Walter H.; Berkmen, Melanie B. – Biochemistry and Molecular Biology Education, 2020
Biology and biochemistry students must learn to visualize and comprehend the complex three-dimensional (3D) structures of macromolecules such as proteins or DNA. However, most tools available for teaching biomolecular structures typically operate in two dimensions. Here, we present protocols and pedagogical approaches for using immersive augmented…
Descriptors: Teaching Methods, Molecular Structure, Computer Software, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Damjanovic; Laura Harrison – Social Studies and the Young Learner, 2023
The authors introduce the readers to a project that highlights digital heritage in early childhood. The highlighted teachers partnered with an anthropologically-trained archaeologist who utilizes advanced digital technologies to enhance public understanding of cultural heritage. This collaboration emphasized social studies and reinforced…
Descriptors: Archaeology, Context Effect, Learner Engagement, Spatial Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Su, Jun; Wang, Weiguo; Wang, Xu; Song, Feng – Physics Teacher, 2019
Gravitational lensing is an interesting phenomenon in astronomy and is most typically given rise to by galaxies. The majority of the matter in a galaxy is thought to be dark matter, and the galactic gravitational lensing effect is mainly caused by dark matter halos. In gravitational lensing-related demonstrations in physics education, the feet of…
Descriptors: Computer Simulation, Computer Peripherals, Printing, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ning Yuan; Tucker-Kellogg, Greg – Biochemistry and Molecular Biology Education, 2020
Understanding macromolecular structures is essential for biology education. Augmented reality (AR) applications have shown promise in science, technology, engineering, and mathematics (STEM) education, but are not widely used for protein visualization. While there are some tools for AR protein visualization, none of them are accessible to the…
Descriptors: Visualization, Molecular Structure, Computer Simulation, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Oliver A. H.; Spencer, Michelle J. S. – Journal of Chemical Education, 2018
Using tangible models to help students visualize chemical structures in three dimensions has been a mainstay of chemistry education for many years. Conventional chemistry modeling kits are, however, limited in the types and accuracy of the molecules, bonds and structures they can be used to build. The recent development of 3D printing technology…
Descriptors: Computer Peripherals, Printing, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
LeSuer, Robert J. – Journal of Chemical Education, 2019
Consumer-grade manufacturing tools such as 3D printers are becoming increasingly prevalent in STEM education environments, especially as tools to develop inexpensive, tactile visualization models. Presented here is a workflow for creating 3D-printed periodic tables displaying a variety of trends from traditionally taught relationships such as…
Descriptors: Educational Technology, Hands on Science, Printed Materials, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, Eric J.; Jones, Michael; Thiel, D. Alex; Pauls, Steve – Journal of Chemical Education, 2018
Additive manufacturing (3D printing) is a technology with near-unlimited potential for the chemical educator. However, its adoption into higher education has been limited by the dual requirements of expertise in 3D printing and 3D computer-aided design (CAD). Thus, its reported utilization in the chemistry curriculum has been within the creation…
Descriptors: Chemistry, Science Education, Open Source Technology, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Katsio-Loudis, Petros; Jones, Millie – Technology and Engineering Teacher, 2015
Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…
Descriptors: Computer Assisted Design, Computer Software, Computer Peripherals, Spatial Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Poetzel, Adam; Muskin, Joseph; Munroe, Anne; Russell, Craig – Mathematics Teacher, 2012
Imagine high school students glued to computer screens--not playing video games but applying their mathematical knowledge of functions to the design of three-dimensional sculptures. Imagine these students engaging in rich discourse as they transform functions of their choosing to design unique creations. Now, imagine these students using…
Descriptors: High School Students, Secondary School Mathematics, Mathematics Education, College School Cooperation