NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gorard, Stephen; Gorard, Jonathan – International Journal of Social Research Methodology, 2016
This brief paper introduces a new approach to assessing the trustworthiness of research comparisons when expressed numerically. The 'number needed to disturb' a research finding would be the number of counterfactual values that can be added to the smallest arm of any comparison before the difference or 'effect' size disappears, minus the number of…
Descriptors: Statistical Significance, Testing, Sampling, Attrition (Research Studies)
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A.; Millsap, Roger E. – Educational and Psychological Measurement, 2013
A multiple testing method for examining factorial invariance for latent constructs evaluated by multiple indicators in distinct populations is outlined. The procedure is based on the false discovery rate concept and multiple individual restriction tests and resolves general limitations of a popular factorial invariance testing approach. The…
Descriptors: Testing, Statistical Analysis, Factor Analysis, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Bollen, Kenneth A.; Davis, Walter R. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
We discuss the identification, estimation, and testing of structural equation models that have causal indicators. We first provide 2 rules of identification that are particularly helpful in models with causal indicators--the 2C emitted paths rule and the exogenous X rule. We demonstrate how these rules can help us distinguish identified from…
Descriptors: Structural Equation Models, Testing, Identification, Statistical Significance
Dorman, Jeffrey P. – International Journal of Research & Method in Education, 2008
This article discusses issues associated with statistical testing conducted with data from clustered school samples. Empirical researchers often conduct tests of statistical inference on sample data to ascertain the extent to which differences exist within groups in the population. Typically, much school-related data are collected from students.…
Descriptors: Testing, Statistical Significance, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Levine, Timothy R.; Weber, Rene; Park, Hee Sun; Hullett, Craig R. – Human Communication Research, 2008
This paper offers a practical guide to use null hypotheses significance testing and its alternatives. The focus is on improving the quality of statistical inference in quantitative communication research. More consistent reporting of descriptive statistics, estimates of effect size, confidence intervals around effect sizes, and increasing the…
Descriptors: Intervals, Communication Research, Testing, Statistical Significance