NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, Axel; Steyer, Rolf; Mueller, Horst – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…
Descriptors: Statistical Analysis, Measurement, Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Eusebi, Paolo – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A graphical method is presented for assessing the state of identifiability of the parameters in a linear structural equation model based on the associated directed graph. We do not restrict attention to recursive models. In the recent literature, methods based on graphical models have been presented as a useful tool for assessing the state of…
Descriptors: Structural Equation Models, Graphs, Evaluation Methods, Mathematical Concepts
Peer reviewed Peer reviewed
Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy – Structural Equation Modeling, 2003
Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)
Descriptors: Data Analysis, Matrices, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Dolan, Conor; Bechger, Timo; Molenaar, Peter – Structural Equation Modeling, 1999
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Descriptors: Computer Software, Factor Analysis, Goodness of Fit, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bechger, Timo M.; Maris, Gunter – Psicologica: International Journal of Methodology and Experimental Psychology, 2004
This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…
Descriptors: Structural Equation Models, Multitrait Multimethod Techniques, Schematic Studies, Correlation