Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 11 |
Descriptor
Source
Author
| Algina, James | 1 |
| Andrew Forney | 1 |
| Bontempo, Daniel | 1 |
| Carlos Cinelli | 1 |
| David Goretzko | 1 |
| Deering, Kathleen N. | 1 |
| Fayers, Peter | 1 |
| Gardner, John | 1 |
| Grabovsky, Irina | 1 |
| Harris, Douglas N. | 1 |
| Hessen, David J. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Descriptive | 11 |
Education Level
| Adult Education | 1 |
| Elementary Secondary Education | 1 |
| Higher Education | 1 |
Audience
Location
| United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
What Works Clearinghouse Rating
Carlos Cinelli; Andrew Forney; Judea Pearl – Sociological Methods & Research, 2024
Many students of statistics and econometrics express frustration with the way a problem known as "bad control" is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is…
Descriptors: Regression (Statistics), Robustness (Statistics), Error of Measurement, Testing Problems
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Little, Todd D.; Bontempo, Daniel; Rioux, Charlie; Tracy, Allison – International Journal of Research & Method in Education, 2022
Multilevel modelling (MLM) is the most frequently used approach for evaluating interventions with clustered data. MLM, however, has some limitations that are associated with numerous obstacles to model estimation and valid inferences. Longitudinal multiple-group (LMG) modelling is a longstanding approach for testing intervention effects using…
Descriptors: Longitudinal Studies, Hierarchical Linear Modeling, Alternative Assessment, Intervention
Grabovsky, Irina; Wainer, Howard – Journal of Educational and Behavioral Statistics, 2017
In this essay, we describe the construction and use of the Cut-Score Operating Function in aiding standard setting decisions. The Cut-Score Operating Function shows the relation between the cut-score chosen and the consequent error rate. It allows error rates to be defined by multiple loss functions and will show the behavior of each loss…
Descriptors: Cutting Scores, Standard Setting (Scoring), Decision Making, Error Patterns
Moraveji, Behjat; Jafarian, Koorosh – International Journal of Education and Literacy Studies, 2014
The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…
Descriptors: Mathematics, Computation, Robustness (Statistics), Regression (Statistics)
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Fayers, Peter – Advances in Health Sciences Education, 2011
Although many parametric statistical tests are considered to be robust, as recently shown in Methodologist's Corner, it still pays to be circumspect about the assumptions underlying statistical tests. In this paper I show that robustness mainly refers to "[alpha]", the type-I error. If the underlying distribution of data is ignored there…
Descriptors: Statistical Analysis, Tests, Robustness (Statistics), Statistical Distributions
Gardner, John – Oxford Review of Education, 2013
Evidence from recent research suggests that in the UK the public perception of errors in national examinations is that they are simply mistakes; events that are preventable. This perception predominates over the more sophisticated technical view that errors arise from many sources and create an inevitable variability in assessment outcomes. The…
Descriptors: Educational Assessment, Public Opinion, Error of Measurement, Foreign Countries
Harris, Douglas N. – Phi Delta Kappan, 2010
Current value-added models for teacher accountability are better than models based only on student achievement, but they have their weakness. They are subject to systematic and random error, as are all measures, and there are concerns about the tests used for the measurements. However, value-added models are better than the alternatives at the…
Descriptors: School Effectiveness, Error of Measurement, Achievement Gains, Academic Achievement
A Generally Robust Approach for Testing Hypotheses and Setting Confidence Intervals for Effect Sizes
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N. – Psychological Methods, 2008
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
Descriptors: Intervals, Testing, Least Squares Statistics, Effect Size

Peer reviewed
Direct link
