Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 21 |
Descriptor
Source
Author
Bull, Susan | 2 |
Abdelali Zakrani | 1 |
Abdellah Bennane | 1 |
Alan Cadwallader | 1 |
Alison Harrison | 1 |
Archer, Elizabeth | 1 |
Baker, Ryan S. | 1 |
Basson, Marita | 1 |
Bhaskar, Raghav | 1 |
Brown, Alice | 1 |
Essalmi, Fathi | 1 |
More ▼ |
Publication Type
Reports - Descriptive | 21 |
Journal Articles | 16 |
Speeches/Meeting Papers | 4 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Adult Education | 1 |
Audience
Location
California | 1 |
Morocco | 1 |
New Zealand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Stephanie J. Blackmon; Robert L. Moore – Journal of Computing in Higher Education, 2024
As learning analytics use grows across U.S. colleges and universities, so does the need to discuss the plans, purposes, and paths for the data collected via learning analytics. More specifically, students, faculty, and others who are impacted by learning analytics use should have more information about their campus' learning analytics practices…
Descriptors: Learning Analytics, Networks, Models, Ethics
Kim, Yunsung; Sreechan; Piech, Chris; Thille, Candace – International Educational Data Mining Society, 2023
Dynamic Item Response Models extend the standard Item Response Theory (IRT) to capture temporal dynamics in learner ability. While these models have the potential to allow instructional systems to actively monitor the evolution of learner proficiency in real time, existing dynamic item response models rely on expensive inference algorithms that…
Descriptors: Item Response Theory, Accuracy, Inferences, Algorithms
Vatsalan, Dinusha; Rakotoarivelo, Thierry; Bhaskar, Raghav; Tyler, Paul; Ladjal, Djazia – British Journal of Educational Technology, 2022
With Big Data revolution, the education sector is being reshaped. The current data-driven education system provides many opportunities to utilize the enormous amount of collected data about students' activities and performance for personalized education, adapting teaching methods, and decision making. On the other hand, such benefits come at a…
Descriptors: Privacy, Risk, Data, Markov Processes
Winne, Philip H. – International Journal of Artificial Intelligence in Education, 2021
Learner modeling systems so far formulated model learning in three main ways: a learner's "position" within a lattice of declarative and procedural knowledge about highly structured disciplines such as geometry or physics, a learner's path through curricular tasks compared to milestones, or profiles of a learner's achievements on a set…
Descriptors: Models, Student Characteristics, Access to Information, Learning Processes
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
McEneaney, John; Morsink, Paul – Journal of Learning Analytics, 2022
Learning analytics (LA) provides tools to analyze historical data with the goal of better understanding how curricular structures and features have impacted student learning. Forward-looking curriculum design, however, frequently involves a degree of uncertainty. Historical data may be unavailable, a contemplated modification to curriculum may be…
Descriptors: Curriculum Design, Learning Analytics, Educational Change, Computer Software
Khalid Oqaidi; Sarah Aouhassi; Khalifa Mansouri – International Association for Development of the Information Society, 2022
The dropout of students is one of the major obstacles that ruin the improvement of higher education quality. To facilitate the study of students' dropout in Moroccan universities, this paper aims to establish a clustering approach model based on machine learning algorithms to determine Moroccan universities categories. Our objective in this…
Descriptors: Models, Prediction, Dropouts, Learning Analytics
Brown, Alice; Lawrence, Jill; Basson, Marita; Redmond, Petrea – Higher Education Research and Development, 2022
Student engagement is consistently identified as a key predictor of learner outcomes within the online learning environment. However, there is limited guidance about using proactive strategies to improve engagement for low and non-engaged students: for example by specifically employing course learning analytics (CLA) and nudging strategies in…
Descriptors: Electronic Learning, Learner Engagement, Instructional Improvement, College Instruction
Bull, Susan – International Journal of Artificial Intelligence in Education, 2021
For the special issue of the International Journal of Artificial Intelligence in Education dedicated to the memory of Jim Greer, this paper highlights some of Jim's extensive and always-timely contributions to the field: from his early AI-focussed research on intelligent tutoring systems, through a variety of applications deployed to support…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Educational Research, College Students
Lynnette Brice; Alison Harrison; Alan Cadwallader – Journal of Open, Flexible and Distance Learning, 2023
The purpose of this paper is to share insights gained from the discovery, design, and delivery phases of creating a three-tiered model of non-academic learning support in open, distance, and flexible learning (ODFL): "Learner Engagement and Success Services (LESS)", at Open Polytechnic | Te Pukenga, New Zealand. Presented as a case…
Descriptors: Ethics, Learning Analytics, Intervention, Foreign Countries
Ghallabi, Sameh; Essalmi, Fathi; Jemni, Mohamed; Kinshuk – Education and Information Technologies, 2020
With the emergence of technology, the personalization of e-learning systems is enhanced. These systems use a set of parameters for personalizing courses. However, in literature, these parameters are not based on classification and optimization algorithms to implement them in the cloud. Cloud computing is a new model of computing where standard and…
Descriptors: Electronic Learning, Internet, Information Storage, Models
Jamal Eddine Rafiq; Abdelali Zakrani; Mohammed Amraouy; Said Nouh; Abdellah Bennane – Turkish Online Journal of Distance Education, 2025
The emergence of online learning has sparked increased interest in predicting learners' academic performance to enhance teaching effectiveness and personalized learning. In this context, we propose a complex model APPMLT-CBT which aims to predict learners' performance in online learning settings. This systemic model integrates cognitive, social,…
Descriptors: Models, Online Courses, Educational Improvement, Learning Processes
Lajoie, Susanne P. – International Journal of Artificial Intelligence in Education, 2021
I first met Jim Greer at the NATO Advanced Study Institute on Syntheses of Instructional Sciences and Computing Science for Effective Instructional Computing Systems in 1990 in Calgary, Canada. It was during this meeting that I came to realize that Jim was one of those rare individuals that could help "translate" computer science…
Descriptors: Models, Student Characteristics, Artificial Intelligence, Computer Uses in Education
Kisling, Reid; Peterson, Andrew; Nisbet, Robert – Strategic Enrollment Management Quarterly, 2021
Data analytics is undergoing an evolution through effective data use to support both operational and learning analytics models. However, this evolution will require that institutional leaders transform their data systems to best support the needs of application modeling and use their intuition to help drive the development of better analytical…
Descriptors: Higher Education, Learning Analytics, Models, Instructional Leadership
Williams, Janet M.; Pulido, Laurie – American Association for Adult and Continuing Education, 2022
During the COVID-19 pandemic, an adult noncredit program in the California Community College system partnered with Ease Learning to help convert face-to-face courses to an online modality. Subsequent data revealed a misalignment in the courses' Student Learning Outcomes and Instructional Objectives which became a barrier to student success. Wile's…
Descriptors: Best Practices, Teaching Methods, Online Courses, Outcomes of Education
Previous Page | Next Page ยป
Pages: 1 | 2