Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 10 |
| Since 2007 (last 20 years) | 20 |
Descriptor
Source
Author
| Aguilar, Jose | 1 |
| Aleven, Vincent | 1 |
| Andres, Eric | 1 |
| Aroyo, Lora | 1 |
| Avouris, Nikolaos | 1 |
| Belenky, Daniel M. | 1 |
| Boyer, Kristy Elizabeth | 1 |
| Buendía, Omar | 1 |
| Bull, Susan | 1 |
| Camurcu, A. Yilmaz | 1 |
| Carolyn P. Rosé | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 29 |
| Journal Articles | 20 |
| Speeches/Meeting Papers | 8 |
| Opinion Papers | 1 |
Education Level
| Higher Education | 5 |
| Postsecondary Education | 4 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
John Stamper; Steven Moore; Carolyn P. Rosé; Philip I. Pavlik Jr.; Kenneth Koedinger – Journal of Educational Data Mining, 2024
LearnSphere is a web-based data infrastructure designed to transform scientific discovery and innovation in education. It supports learning researchers in addressing a broad range of issues including cognitive, social, and motivational factors in learning, educational content analysis, and educational technology innovation. LearnSphere integrates…
Descriptors: Learning Analytics, Web Sites, Data Use, Educational Technology
Jonathan Brazil; Suijing Yang; Fabienne van der Kleij – Australian Council for Educational Research, 2025
This document provides guiding principles and practical examples for using AI in teaching and learning. Underpinned by a human-centred approach, the PATH principles serve as key guidance to ensure the ethical and effective integration of AI systems into teaching and learning. The PATH principles are: Promote teaching and learning; Advance…
Descriptors: Artificial Intelligence, Computer Software, Technology Integration, Educational Principles
Pandey, Shalini; Karypis, George – International Educational Data Mining Society, 2019
Knowledge tracing is the task of modeling each student's mastery of knowledge concepts (KCs) as (s)he engages with a sequence of learning activities. Each student's knowledge is modeled by estimating the performance of the student on the learning activities. It is an important research area for providing a personalized learning platform to…
Descriptors: Learning Processes, Databases, Intelligent Tutoring Systems, Knowledge Level
Saastamoinen, Kalle; Rissanen, Antti; Mutanen, Arto – International Baltic Symposium on Science and Technology Education, 2023
There were two projects at the National Defence University of Finland (NDU), which both ended by the end of 2022. One of them tried to find the answers to the main question: How artificial intelligence (AI) could be used to improve learning, teaching, and planning? The other tried to find the answer to the main question: What new skills do…
Descriptors: Foreign Countries, Intelligent Tutoring Systems, Teaching Methods, Learning Analytics
Mamcenko, Jelena; Kurilovas, Eugenijus; Krikun, Irina – Informatics in Education, 2019
The paper aims to present application of Educational Data Mining and particularly Case-Based Reasoning (CBR) for students profiling and further to design a personalised intelligent learning system. The main aim here is to develop a recommender system which should help the learners to create learning units (scenarios) that are the most suitable for…
Descriptors: Case Method (Teaching Technique), Individualized Instruction, Intelligent Tutoring Systems, Cognitive Style
Leblay, Joffrey; Rabah, Mourad; Champagnat, Ronan; Nowakowski, Samuel – International Association for Development of the Information Society, 2018
How can we learn to use properly business software, digital environments, games or intelligent tutoring systems (ITS)? Mainly, we assume that the new user will learn by doing. But what about the efficiency of such a method? Our approach proposes an answer by introducing on-line coaching. In learning process, learners may need guidance to help them…
Descriptors: Intelligent Tutoring Systems, Coaching (Performance), Efficiency, Learning Processes
Cook, Joshua; Lynch, Collin F.; Hicks, Andrew G.; Mostafavi, Behrooz – International Educational Data Mining Society, 2017
BKT and other classical student models are designed for binary environments where actions are either correct or incorrect. These models face limitations in open-ended and data-driven environments where actions may be correct but non-ideal or where there may even be degrees of error. In this paper we present BKT-SR and RKT-SR: extensions of the…
Descriptors: Models, Bayesian Statistics, Data Use, Intelligent Tutoring Systems
Roux, Lisa; Dagorret, Pantxika; Etcheverry, Patrick; Nodenot, Thierry; Marquesuzaa, Christophe; Lopisteguy, Philippe – International Association for Development of the Information Society, 2021
Distance computer-assisted learning is increasingly common, owing largely to the expansion and development of e-technology. Nevertheless, the available tools of the learning platforms have demonstrated their limits during the pandemic context, since many students, who were used to "face-to-face" education, got discouraged and dropped out…
Descriptors: Distance Education, Computer Software, Teacher Student Relationship, Supervision
Youdell, Deborah; Lindley, Martin; Shapiro, Kimron; Sun, Yu; Leng, Yue – British Journal of Sociology of Education, 2020
In this paper we begin to explore how knowledges being generated in bioscience might be brought into productive articulation with the Sociology of Education, considering the potential for emerging transdisciplinary, 'biosocial' approaches to enable new ways of researching and understanding pressing educational issues. In this paper, as in our…
Descriptors: Interdisciplinary Approach, Neurosciences, Diagnostic Tests, Brain Hemisphere Functions
Bull, Susan – Research and Practice in Technology Enhanced Learning, 2016
Today's technology-enabled learning environments are becoming quite different from those of a few years ago, with the increased processing power as well as a wider range of educational tools. This situation produces more data, which can be fed back into the learning process. Open learner models have already been investigated as tools to promote…
Descriptors: Educational Technology, Electronic Learning, Models, Computer Assisted Instruction
an de Sande, Brett – International Educational Data Mining Society, 2016
Learning curves have proven to be a useful tool for understanding how a student learns a given skill as they progress through a curriculum. A learning curve for a given Knowledge Component (KC) is a plot of some measure of competence as a function of the number of opportunities the student has had to apply that KC. Consider the case where each…
Descriptors: Learning Processes, Knowledge Level, Problem Solving, Homework
Aguilar, Jose; Cordero, Jorge; Buendía, Omar – Journal of Educational Computing Research, 2018
In this article, we propose the concept of "Autonomic Cycle Of Learning Analysis Tasks" (ACOLAT), which defines a set of tasks of learning analysis, whose objective is to improve the learning process. The data analysis has become a fundamental area for the knowledge discovery from data extracted from different sources. In the autonomic…
Descriptors: Data Analysis, Learning Processes, Decision Making, Instructional Improvement
Heift, Trude; Schulze, Mathias – Language Teaching, 2015
"Sometimes maligned for its allegedly behaviorist connotations but critical for success in many fields from music to sport to mathematics and language learning, 'practice' is undergoing something of a revival in the applied linguistics literature" (Long & Richards 2007, p. xi). This research timeline provides a systematic overview of…
Descriptors: Computer Assisted Instruction, Second Language Instruction, Second Language Learning, Learning Processes
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol; Sewall, Jonathan; Ringenberg, Michael – Grantee Submission, 2013
Authoring tools for Intelligent Tutoring System (ITS) have been shown to decrease the amount of time that it takes to develop an ITS. However, most of these tools currently do not extend to collaborative ITSs. In this paper, we illustrate an extension to the Cognitive Tutor Authoring Tools (CTAT) to allow for development of collaborative ITSs that…
Descriptors: Intelligent Tutoring Systems, Programming Languages, Fractions, Learning Processes
Min, Wookhee; Wiggins, Joseph B.; Pezzullo, Lydia G.; Vail, Alexandria K.; Boyer, Kristy Elizabeth; Mott, Bradford W.; Frankosky, Megan H.; Wiebe, Eric N.; Lester, James C. – International Educational Data Mining Society, 2016
Recent years have seen a growing interest in intelligent game-based learning environments featuring virtual agents. A key challenge posed by incorporating virtual agents in game-based learning environments is dynamically determining the dialogue moves they should make in order to best support students' problem solving. This paper presents a…
Descriptors: Prediction, Models, Intelligent Tutoring Systems, Computer Simulation
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
